Cargando…

Polyphenol-Based Nanoparticles: A Promising Frontier for Enhanced Colorectal Cancer Treatment

SIMPLE SUMMARY: Conventional therapies for the treatment of colorectal cancer induce several side effects that impact the effectiveness of current therapies as well as the quality of patients’ life. In recent years, natural compounds with anticancer properties have gained attention as potential ther...

Descripción completa

Detalles Bibliográficos
Autores principales: Wahnou, Hicham, Liagre, Bertrand, Sol, Vincent, El Attar, Hicham, Attar, Rukset, Oudghiri, Mounia, Duval, Raphaël Emmanuel, Limami, Youness
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416951/
https://www.ncbi.nlm.nih.gov/pubmed/37568642
http://dx.doi.org/10.3390/cancers15153826
Descripción
Sumario:SIMPLE SUMMARY: Conventional therapies for the treatment of colorectal cancer induce several side effects that impact the effectiveness of current therapies as well as the quality of patients’ life. In recent years, natural compounds with anticancer properties have gained attention as potential therapeutic agents for various cancers including colorectal cancer. However, several natural compounds such as polyphenols are facing obstacles for their use as anticancer drugs, such as intrinsic poor solubility, plasmatic instability, ineffective cellular uptake, and biological barriers. Currently, novel approaches in precision medicine and nanomedicine are being developed. In this context, to harness the full potential of natural compounds, researchers have explored the use of nanoparticles as a drug delivery system for targeted and enhanced therapeutic efficacy as well as limited side effects. This review provides data on recent advances in strategies using polyphenols-based nanoparticles for the treatment of colorectal cancer. ABSTRACT: Colorectal cancer (CRC) poses a significant challenge in healthcare, necessitating the exploration of novel therapeutic strategies. Natural compounds such as polyphenols with inherent anticancer properties have gained attention as potential therapeutic agents. This review highlights the need for novel therapeutic approaches in CRC, followed by a discussion on the synthesis of polyphenols-based nanoparticles. Various synthesis techniques, including dynamic covalent bonding, non-covalent bonding, polymerization, chemical conjugation, reduction, and metal-polyphenol networks, are explored. The mechanisms of action of these nanoparticles, encompassing passive and active targeting mechanisms, are also discussed. The review further examines the intrinsic anticancer activity of polyphenols and their enhancement through nano-based delivery systems. This section explores the natural anticancer properties of polyphenols and investigates different nano-based delivery systems, such as micelles, nanogels, liposomes, nanoemulsions, gold nanoparticles, mesoporous silica nanoparticles, and metal–organic frameworks. The review concludes by emphasizing the potential of nanoparticle-based strategies utilizing polyphenols for CRC treatment and highlights the need for future research to optimize their efficacy and safety. Overall, this review provides valuable insights into the synthesis, mechanisms of action, intrinsic anticancer activity, and enhancement of polyphenols-based nanoparticles for CRC treatment.