Cargando…

A Cadaveric Study Using Computed Tomography for Measuring the Ocular Bulb and Scleral Skeleton of the Atlantic Puffin (Aves, Alcidae, Fratercula arctica)

SIMPLE SUMMARY: Advanced diagnostic imaging techniques, such as CT, can provide helpful information on the specific structures of the head, such as the ocular bulb, due to their high spatial resolution, avoidance of overlapping structures, and fast imaging acquisition. An adequate knowledge of the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Fumero-Hernández, Marcos, Encinoso, Mario, Ramírez, Ana Sofia, Morales, Inmaculada, Suárez Pérez, Alejandro, Jaber, José Raduan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417006/
https://www.ncbi.nlm.nih.gov/pubmed/37570227
http://dx.doi.org/10.3390/ani13152418
Descripción
Sumario:SIMPLE SUMMARY: Advanced diagnostic imaging techniques, such as CT, can provide helpful information on the specific structures of the head, such as the ocular bulb, due to their high spatial resolution, avoidance of overlapping structures, and fast imaging acquisition. An adequate knowledge of the eye bird anatomy is essential for clinicians, biologists, and researchers to understand many aspects concerning its biology. ABSTRACT: Imaging diagnosis plays a fundamental role in avian medicine. However, there are few publications regarding its use in ophthalmology. Seabirds, in particular, present a peculiar ecology since their lives take place in very diverse environments: the aquatic, the terrestrial, and the aerial. This fact implies a series of adaptations at a visual level that are necessary for adequate interaction with the environment. Therefore, knowledge of eye particularities is of great importance for the scientific community since it allows us to deepen our understanding of the ocular anatomy and biology of these animals, which are increasingly present in veterinary and wildlife centers. In our study, we performed a morphometric analysis of the ocular bulb and its internal structures in the puffin (Fratercula arctica) using advanced imaging techniques such as CT.