Cargando…
Machine Learning Approach for the Prediction of In-Hospital Mortality in Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the Emergency Department
Background: Accurate prediction of in-hospital mortality is essential for better management of patients with traumatic brain injury (TBI). Machine learning (ML) algorithms have been shown to be effective in predicting clinical outcomes. This study aimed to identify predictors of in-hospital mortalit...
Autores principales: | Mekkodathil, Ahammed, El-Menyar, Ayman, Naduvilekandy, Mashhood, Rizoli, Sandro, Al-Thani, Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417008/ https://www.ncbi.nlm.nih.gov/pubmed/37568968 http://dx.doi.org/10.3390/diagnostics13152605 |
Ejemplares similares
-
The FASILA Score: A Novel Bio-Clinical Score to Predict Massive Blood Transfusion in Patients with Abdominal Trauma
por: El-Menyar, Ayman, et al.
Publicado: (2019) -
Initial Serum Levels of Magnesium and Calcium as Predictors of Mortality in Traumatic Brain Injury Patients: A Retrospective Study
por: Mekkodathil, Ahammed, et al.
Publicado: (2023) -
Traumatic injuries in patients with diabetes mellitus
por: El-Menyar, Ayman, et al.
Publicado: (2016) -
Platelet-Lymphocyte and Neutrophil-Lymphocyte Ratio for Prediction of Hospital Outcomes in Patients with Abdominal Trauma
por: El-Menyar, Ayman, et al.
Publicado: (2022) -
Publications and retracted articles of COVID-19 pharmacotherapy-related research: A systematic review
por: El-Menyar, Ayman, et al.
Publicado: (2021)