Cargando…
Cardiac Failure Forecasting Based on Clinical Data Using a Lightweight Machine Learning Metamodel
Accurate prediction of heart failure can help prevent life-threatening situations. Several factors contribute to the risk of heart failure, including underlying heart diseases such as coronary artery disease or heart attack, diabetes, hypertension, obesity, certain medications, and lifestyle habits...
Autores principales: | Mahmud, Istiak, Kabir, Md Mohsin, Mridha, M. F., Alfarhood, Sultan, Safran, Mejdl, Che, Dunren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417090/ https://www.ncbi.nlm.nih.gov/pubmed/37568902 http://dx.doi.org/10.3390/diagnostics13152540 |
Ejemplares similares
-
Deep Learning-Based IoT System for Remote Monitoring and Early Detection of Health Issues in Real-Time
por: Islam, Md. Reazul, et al.
Publicado: (2023) -
Efficient Classification of ECG Images Using a Lightweight CNN with Attention Module and IoT
por: Sadad, Tariq, et al.
Publicado: (2023) -
Detection of Drowsiness among Drivers Using Novel Deep Convolutional Neural Network Model
por: Majeed, Fiaz, et al.
Publicado: (2023) -
Classification of Highly Divergent Viruses from DNA/RNA Sequence Using Transformer-Based Models
por: Sadad, Tariq, et al.
Publicado: (2023) -
A Meta Modeling-Based Interoperability and Integration Testing Platform for IoT Systems
por: Shah, Qasim Ali, et al.
Publicado: (2023)