Cargando…

Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS

3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) are, respectively, the primary metabolites deriving from the breakdown of phenylurea herbicides and dicarboximide fungicides in both soils and plants, whose residues in vegetable products have a heightened concern considering their high...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Yibo, Yao, Xiaolong, Zhang, Wanping, Wu, Xiaomao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417142/
https://www.ncbi.nlm.nih.gov/pubmed/37569143
http://dx.doi.org/10.3390/foods12152875
_version_ 1785087952967172096
author Dong, Yibo
Yao, Xiaolong
Zhang, Wanping
Wu, Xiaomao
author_facet Dong, Yibo
Yao, Xiaolong
Zhang, Wanping
Wu, Xiaomao
author_sort Dong, Yibo
collection PubMed
description 3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) are, respectively, the primary metabolites deriving from the breakdown of phenylurea herbicides and dicarboximide fungicides in both soils and plants, whose residues in vegetable products have a heightened concern considering their higher health risks to humans and greater toxicity than the parent compounds in the environment. In this study, a sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous determination of 3,4-DCA and 3,5-DCA residues in chive products based on the optimization of HPLC-MS/MS chromatographic and mass-spectrometric conditions using the standard substances and the modified QuEChERS preparation technique. The preparation efficiency of 3,4-DCA and 3,5-DCA from chive samples showed that acetonitrile was the best extractant. The combination of the purification agent graphite carbon black + primary secondary amine and the eluting agent acetonitrile + toluene (4:1, v/v) had a satisfactory purification effect. The linear correlation coefficients (R(2)) were more than 0.996 with the six concentration range of 0.001–1.000 mg/L for 3,4-DCA and 3,5-DCA. The limit of detection and limit of quantitation of this method was 0.6 and 2.0 µg/kg for 3,4-DCA, as well as 1.0 and 3.0 µg/kg for 3,5-DCA, respectively. The matrix effect range of 3,4-DCA and 3,5-DCA in chive tissues was from −9.0% to −2.6% and from −4.4% to 2.3%, respectively. The fortified recovery of 3,4-DCA and 3,5-DCA in chive samples at four spiked levels of 0.001–1.000 mg/kg was 75.3–86.0% and 78.2–98.1%, with the relative standard deviation of 2.1–8.5% and 1.4–11.9%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.6, 2.0, and 1.0, 3.03 for 4-DCA and 3,5-DCA, respectively. This study highlights that the analytical method established here can efficiently and sensitively detect residues of 3,4-DCA and 3,5-DCA residues for monitoring chive products. The method was successfully applied to 60 batches of actual vegetable samples from different regions.
format Online
Article
Text
id pubmed-10417142
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104171422023-08-12 Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS Dong, Yibo Yao, Xiaolong Zhang, Wanping Wu, Xiaomao Foods Article 3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) are, respectively, the primary metabolites deriving from the breakdown of phenylurea herbicides and dicarboximide fungicides in both soils and plants, whose residues in vegetable products have a heightened concern considering their higher health risks to humans and greater toxicity than the parent compounds in the environment. In this study, a sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous determination of 3,4-DCA and 3,5-DCA residues in chive products based on the optimization of HPLC-MS/MS chromatographic and mass-spectrometric conditions using the standard substances and the modified QuEChERS preparation technique. The preparation efficiency of 3,4-DCA and 3,5-DCA from chive samples showed that acetonitrile was the best extractant. The combination of the purification agent graphite carbon black + primary secondary amine and the eluting agent acetonitrile + toluene (4:1, v/v) had a satisfactory purification effect. The linear correlation coefficients (R(2)) were more than 0.996 with the six concentration range of 0.001–1.000 mg/L for 3,4-DCA and 3,5-DCA. The limit of detection and limit of quantitation of this method was 0.6 and 2.0 µg/kg for 3,4-DCA, as well as 1.0 and 3.0 µg/kg for 3,5-DCA, respectively. The matrix effect range of 3,4-DCA and 3,5-DCA in chive tissues was from −9.0% to −2.6% and from −4.4% to 2.3%, respectively. The fortified recovery of 3,4-DCA and 3,5-DCA in chive samples at four spiked levels of 0.001–1.000 mg/kg was 75.3–86.0% and 78.2–98.1%, with the relative standard deviation of 2.1–8.5% and 1.4–11.9%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.6, 2.0, and 1.0, 3.03 for 4-DCA and 3,5-DCA, respectively. This study highlights that the analytical method established here can efficiently and sensitively detect residues of 3,4-DCA and 3,5-DCA residues for monitoring chive products. The method was successfully applied to 60 batches of actual vegetable samples from different regions. MDPI 2023-07-28 /pmc/articles/PMC10417142/ /pubmed/37569143 http://dx.doi.org/10.3390/foods12152875 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dong, Yibo
Yao, Xiaolong
Zhang, Wanping
Wu, Xiaomao
Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS
title Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS
title_full Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS
title_fullStr Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS
title_full_unstemmed Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS
title_short Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS
title_sort development of simultaneous determination method of pesticide high toxic metabolite 3,4-dichloroaniline and 3,5 dichloroaniline in chives using hplc-ms/ms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417142/
https://www.ncbi.nlm.nih.gov/pubmed/37569143
http://dx.doi.org/10.3390/foods12152875
work_keys_str_mv AT dongyibo developmentofsimultaneousdeterminationmethodofpesticidehightoxicmetabolite34dichloroanilineand35dichloroanilineinchivesusinghplcmsms
AT yaoxiaolong developmentofsimultaneousdeterminationmethodofpesticidehightoxicmetabolite34dichloroanilineand35dichloroanilineinchivesusinghplcmsms
AT zhangwanping developmentofsimultaneousdeterminationmethodofpesticidehightoxicmetabolite34dichloroanilineand35dichloroanilineinchivesusinghplcmsms
AT wuxiaomao developmentofsimultaneousdeterminationmethodofpesticidehightoxicmetabolite34dichloroanilineand35dichloroanilineinchivesusinghplcmsms