Cargando…

Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease

Chronic kidney disease (CKD) refers to impairment of the kidneys that may worsen over time. Early detection of CKD is crucial for saving millions of lives. As a result, several studies are currently focused on developing computer-aided systems to detect CKD in its early stages. Manual screening is t...

Descripción completa

Detalles Bibliográficos
Autor principal: Ismail, Walaa N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417271/
https://www.ncbi.nlm.nih.gov/pubmed/37568865
http://dx.doi.org/10.3390/diagnostics13152501
_version_ 1785087986802622464
author Ismail, Walaa N.
author_facet Ismail, Walaa N.
author_sort Ismail, Walaa N.
collection PubMed
description Chronic kidney disease (CKD) refers to impairment of the kidneys that may worsen over time. Early detection of CKD is crucial for saving millions of lives. As a result, several studies are currently focused on developing computer-aided systems to detect CKD in its early stages. Manual screening is time-consuming and subject to personal judgment. Therefore, methods based on machine learning (ML) and automatic feature selection are used to support graders. The goal of feature selection is to identify the most relevant and informative subset of features in a given dataset. This approach helps mitigate the curse of dimensionality, reduce dimensionality, and enhance model performance. The use of natural-inspired optimization algorithms has been widely adopted to develop appropriate representations of complex problems by conducting a blackbox optimization process without explicitly formulating mathematical formulations. Recently, snake optimization algorithms have been developed to identify optimal or near-optimal solutions to difficult problems by mimicking the behavior of snakes during hunting. The objective of this paper is to develop a novel snake-optimized framework named CKD-SO for CKD data analysis. To select and classify the most suitable medical data, five machine learning algorithms are deployed, along with the snake optimization (SO) algorithm, to create an extremely accurate prediction of kidney and liver disease. The end result is a model that can detect CKD with 99.7% accuracy. These results contribute to our understanding of the medical data preparation pipeline. Furthermore, implementing this method will enable health systems to achieve effective CKD prevention by providing early interventions that reduce the high burden of CKD-related diseases and mortality.
format Online
Article
Text
id pubmed-10417271
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104172712023-08-12 Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease Ismail, Walaa N. Diagnostics (Basel) Article Chronic kidney disease (CKD) refers to impairment of the kidneys that may worsen over time. Early detection of CKD is crucial for saving millions of lives. As a result, several studies are currently focused on developing computer-aided systems to detect CKD in its early stages. Manual screening is time-consuming and subject to personal judgment. Therefore, methods based on machine learning (ML) and automatic feature selection are used to support graders. The goal of feature selection is to identify the most relevant and informative subset of features in a given dataset. This approach helps mitigate the curse of dimensionality, reduce dimensionality, and enhance model performance. The use of natural-inspired optimization algorithms has been widely adopted to develop appropriate representations of complex problems by conducting a blackbox optimization process without explicitly formulating mathematical formulations. Recently, snake optimization algorithms have been developed to identify optimal or near-optimal solutions to difficult problems by mimicking the behavior of snakes during hunting. The objective of this paper is to develop a novel snake-optimized framework named CKD-SO for CKD data analysis. To select and classify the most suitable medical data, five machine learning algorithms are deployed, along with the snake optimization (SO) algorithm, to create an extremely accurate prediction of kidney and liver disease. The end result is a model that can detect CKD with 99.7% accuracy. These results contribute to our understanding of the medical data preparation pipeline. Furthermore, implementing this method will enable health systems to achieve effective CKD prevention by providing early interventions that reduce the high burden of CKD-related diseases and mortality. MDPI 2023-07-27 /pmc/articles/PMC10417271/ /pubmed/37568865 http://dx.doi.org/10.3390/diagnostics13152501 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ismail, Walaa N.
Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease
title Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease
title_full Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease
title_fullStr Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease
title_full_unstemmed Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease
title_short Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease
title_sort snake-efficient feature selection-based framework for precise early detection of chronic kidney disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417271/
https://www.ncbi.nlm.nih.gov/pubmed/37568865
http://dx.doi.org/10.3390/diagnostics13152501
work_keys_str_mv AT ismailwalaan snakeefficientfeatureselectionbasedframeworkforpreciseearlydetectionofchronickidneydisease