Cargando…
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM
Researchers commonly use continuous noninvasive blood-pressure measurement (cNIBP) based on photoplethysmography (PPG) signals to monitor blood pressure conveniently. However, the performance of the system still needs to be improved. Accuracy and precision in blood-pressure measurements are critical...
Autores principales: | Mahardika T, Nurul Qashri, Fuadah, Yunendah Nur, Jeong, Da Un, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417316/ https://www.ncbi.nlm.nih.gov/pubmed/37568929 http://dx.doi.org/10.3390/diagnostics13152566 |
Ejemplares similares
-
An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features
por: Jeong, Da Un, et al.
Publicado: (2021) -
Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of Parkinson’s disease
por: Lilhore, Umesh Kumar, et al.
Publicado: (2023)