Cargando…

Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production

Compounds that cause oxidative stress have recently gained considerable interest as potential anticancer treatment modalities. Nevertheless, their efficiency may be diminished by the antioxidant systems often upregulated in cancer cells. Peroxiredoxins (PRDXs) are antioxidant enzymes that scavenge p...

Descripción completa

Detalles Bibliográficos
Autores principales: Szeliga, Monika, Rola, Radosław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417327/
https://www.ncbi.nlm.nih.gov/pubmed/37566013
http://dx.doi.org/10.3390/cells12151934
_version_ 1785088004965007360
author Szeliga, Monika
Rola, Radosław
author_facet Szeliga, Monika
Rola, Radosław
author_sort Szeliga, Monika
collection PubMed
description Compounds that cause oxidative stress have recently gained considerable interest as potential anticancer treatment modalities. Nevertheless, their efficiency may be diminished by the antioxidant systems often upregulated in cancer cells. Peroxiredoxins (PRDXs) are antioxidant enzymes that scavenge peroxides and contribute to redox homeostasis. They play a role in carcinogenesis and are upregulated in several cancer types. Here, we assessed the expression pattern of PRDX1 and PRDX2 in glioblastoma (GBM) and examined the efficacy of their inhibitors in GBM cell lines and patient-derived GBM cells. Both PRDX1 and PRDX2 were upregulated in GBM compared to non-tumor brain tissues and their considerable amounts were observed in GBM cells. Adenanthin, a compound inhibiting PRDX1 activity, slightly decreased GBM cell viability, while conoidin A (CONA), a covalent PRDX2 inhibitor, displayed high toxicity in GBM cells. CONA elevated the intracellular reactive oxygen species (ROS) level. Pre-treatment with an ROS scavenger protected cells from CONA-induced death, indicating that ROS accumulation plays a crucial role in this phenomenon. Menadione or celecoxib, both of which are ROS-inducing agents, potentiated the anticancer activity of CONA. Collectively, our results unveil PRDX1 and PRDX2 as potential targets for GBM therapy, and substantiate the further exploration of their inhibitors.
format Online
Article
Text
id pubmed-10417327
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104173272023-08-12 Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production Szeliga, Monika Rola, Radosław Cells Article Compounds that cause oxidative stress have recently gained considerable interest as potential anticancer treatment modalities. Nevertheless, their efficiency may be diminished by the antioxidant systems often upregulated in cancer cells. Peroxiredoxins (PRDXs) are antioxidant enzymes that scavenge peroxides and contribute to redox homeostasis. They play a role in carcinogenesis and are upregulated in several cancer types. Here, we assessed the expression pattern of PRDX1 and PRDX2 in glioblastoma (GBM) and examined the efficacy of their inhibitors in GBM cell lines and patient-derived GBM cells. Both PRDX1 and PRDX2 were upregulated in GBM compared to non-tumor brain tissues and their considerable amounts were observed in GBM cells. Adenanthin, a compound inhibiting PRDX1 activity, slightly decreased GBM cell viability, while conoidin A (CONA), a covalent PRDX2 inhibitor, displayed high toxicity in GBM cells. CONA elevated the intracellular reactive oxygen species (ROS) level. Pre-treatment with an ROS scavenger protected cells from CONA-induced death, indicating that ROS accumulation plays a crucial role in this phenomenon. Menadione or celecoxib, both of which are ROS-inducing agents, potentiated the anticancer activity of CONA. Collectively, our results unveil PRDX1 and PRDX2 as potential targets for GBM therapy, and substantiate the further exploration of their inhibitors. MDPI 2023-07-26 /pmc/articles/PMC10417327/ /pubmed/37566013 http://dx.doi.org/10.3390/cells12151934 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Szeliga, Monika
Rola, Radosław
Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production
title Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production
title_full Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production
title_fullStr Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production
title_full_unstemmed Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production
title_short Conoidin A, a Covalent Inhibitor of Peroxiredoxin 2, Reduces Growth of Glioblastoma Cells by Triggering ROS Production
title_sort conoidin a, a covalent inhibitor of peroxiredoxin 2, reduces growth of glioblastoma cells by triggering ros production
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417327/
https://www.ncbi.nlm.nih.gov/pubmed/37566013
http://dx.doi.org/10.3390/cells12151934
work_keys_str_mv AT szeligamonika conoidinaacovalentinhibitorofperoxiredoxin2reducesgrowthofglioblastomacellsbytriggeringrosproduction
AT rolaradosław conoidinaacovalentinhibitorofperoxiredoxin2reducesgrowthofglioblastomacellsbytriggeringrosproduction