Cargando…
A CT-Based Clinical, Radiological and Radiomic Machine Learning Model for Predicting Malignancy of Solid Renal Tumors (UroCCR-75)
Background: Differentiating benign from malignant renal tumors is important for patient management, and it may be improved by quantitative CT features analysis including radiomic. Purpose: This study aimed to compare performances of machine learning models using bio-clinical, conventional radiologic...
Autores principales: | Garnier, Cassandre, Ferrer, Loïc, Vargas, Jennifer, Gallinato, Olivier, Jambon, Eva, Le Bras, Yann, Bernhard, Jean-Christophe, Colin, Thierry, Grenier, Nicolas, Marcelin, Clément |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417436/ https://www.ncbi.nlm.nih.gov/pubmed/37568911 http://dx.doi.org/10.3390/diagnostics13152548 |
Ejemplares similares
-
Comparison of open and robotic-assisted partial nephrectomy approaches using multicentric data (UroCCR-47 study)
por: Ingels, A., et al.
Publicado: (2022) -
Can Pre-Operative Neutrophil-to-Lymphocyte Ratio (NLR) Help Predict Non-Metastatic Renal Carcinoma Recurrence after Nephrectomy? (UroCCR-61 Study)
por: Allenet, Clément, et al.
Publicado: (2022) -
Feasibility of robotic-assisted partial nephrectomy for complete remission of metastatic renal cell carcinoma after long exposure to immune checkpoint inhibitors (UroCCR-106)
por: Mebroukine, Samy, et al.
Publicado: (2022) -
Positive surgical margin’s impact on short-term oncological prognosis after robot-assisted partial nephrectomy (MARGINS study: UroCCR no 96)
por: Morrone, Arnoult, et al.
Publicado: (2022) -
External Validation of the ASSURE Model for Predicting Oncological Outcomes After Resection of High-risk Renal Cell Carcinoma (RESCUE Study: UroCCR 88)
por: Khene, Zine-Eddine, et al.
Publicado: (2021)