Cargando…
Vessel Delineation Using U-Net: A Sparse Labeled Deep Learning Approach for Semantic Segmentation of Histological Images
SIMPLE SUMMARY: In our study, we aimed to create an accurate segmentation algorithm of blood vessels within histologically stained tumor tissue using deep learning. Blood vessels are crucial for supplying nutrients to tumor cells, and accurately identifying them is essential for understanding tumor...
Autores principales: | Glänzer, Lukas, Masalkhi, Husam E., Roeth, Anjali A., Schmitz-Rode, Thomas, Slabu, Ioana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417575/ https://www.ncbi.nlm.nih.gov/pubmed/37568589 http://dx.doi.org/10.3390/cancers15153773 |
Ejemplares similares
-
Towards Realistic 3D Models of Tumor Vascular Networks
por: Lindemann, Max C., et al.
Publicado: (2023) -
Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells
por: Engelmann, Ulrich M., et al.
Publicado: (2018) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Establishment of a biophysical model to optimize endoscopic targeting of magnetic nanoparticles for cancer treatment
por: Roeth, Anjali A, et al.
Publicado: (2017) -
Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors
por: Mues, Benedikt, et al.
Publicado: (2021)