Cargando…
Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review
SIMPLE SUMMARY: Radiomics involves the extraction of quantitative features from medical images, which can provide more detailed and objective information about the features of a tumor compared to visual inspection alone. By analyzing the extensive range of features obtained through radiomics, machin...
Autores principales: | Tabassum, Mehnaz, Suman, Abdulla Al, Suero Molina, Eric, Pan, Elizabeth, Di Ieva, Antonio, Liu, Sidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417709/ https://www.ncbi.nlm.nih.gov/pubmed/37568660 http://dx.doi.org/10.3390/cancers15153845 |
Ejemplares similares
-
SoftMatch: Comparing Scanpaths Using Combinatorial Spatio-Temporal Sequences with Fractal Curves
por: Newport, Robert Ahadizad, et al.
Publicado: (2022) -
A Spotlight on the Role of Radiomics and Machine-Learning Applications in the Management of Intracranial Meningiomas: A New Perspective in Neuro-Oncology: A Review
por: Brunasso, Lara, et al.
Publicado: (2022) -
Connectomics as a prognostic tool of functional outcome in glioma surgery of the supplementary motor area: illustrative case
por: Suero Molina, Eric, et al.
Publicado: (2023) -
Machine Learning for Brain MRI Data Harmonisation: A Systematic Review
por: Wen, Grace, et al.
Publicado: (2023) -
Applications of radiomics and machine learning for radiotherapy of malignant brain tumors
por: Kocher, Martin, et al.
Publicado: (2020)