Cargando…

A diversified, widespread microbial gene cluster encodes homologs of methyltransferases involved in methanogenesis

Analyses of microbial genomes have revealed unexpectedly wide distributions of enzymes from specialized metabolism, including methanogenesis, providing exciting opportunities for discovery. Here, we identify a family of gene clusters (the type 1 mlp gene clusters (MGCs)) that encodes homologs of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kountz, Duncan J., Balskus, Emily P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418091/
https://www.ncbi.nlm.nih.gov/pubmed/37577662
http://dx.doi.org/10.1101/2023.07.31.551370
Descripción
Sumario:Analyses of microbial genomes have revealed unexpectedly wide distributions of enzymes from specialized metabolism, including methanogenesis, providing exciting opportunities for discovery. Here, we identify a family of gene clusters (the type 1 mlp gene clusters (MGCs)) that encodes homologs of the soluble coenzyme M methyltransferases (SCMTs) involved in methylotrophic methanogenesis and is widespread in bacteria and archaea. Type 1 MGCs are expressed and regulated in medically, environmentally, and industrially important organisms, making them likely to be physiologically relevant. Enzyme annotation, analysis of genomic context, and biochemical experiments suggests these gene clusters play a role in methyl-sulfur and/or methyl-selenide metabolism in numerous anoxic environments, including the human gut microbiome, potentially impacting sulfur and selenium cycling in diverse, anoxic environments.