Cargando…
SAMPLER: Empirical distribution representations for rapid analysis of whole slide tissue images
Deep learning has revolutionized digital pathology, allowing for automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. In such analyses, WSIs are typically broken into smaller images called tiles, and a neural network backbone encodes each tile in...
Autores principales: | Mukashyaka, Patience, Sheridan, Todd B., Foroughi pour, Ali, Chuang, Jeffrey H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418159/ https://www.ncbi.nlm.nih.gov/pubmed/37577691 http://dx.doi.org/10.1101/2023.08.01.551468 |
Ejemplares similares
-
Deep learning features encode interpretable morphologies within histological images
por: Foroughi pour, Ali, et al.
Publicado: (2022) -
Mapping stain distribution in pathology slides using whole slide imaging
por: Yeh, Fang-Cheng, et al.
Publicado: (2014) -
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images
por: Kather, Jakob Nikolas, et al.
Publicado: (2015) -
A self-supervised contrastive learning approach for whole slide image representation in digital pathology
por: Fashi, Parsa Ashrafi, et al.
Publicado: (2022)