Cargando…

A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we desc...

Descripción completa

Detalles Bibliográficos
Autores principales: Marmont, Lindsey S., Orta, Anna K., Corey, Robin A., Sychantha, David, Galliano, Ana Fernández, Li, Yancheng E., Baileeves, Becca W.A., Greene, Neil G., Stansfeld, Phillip J., Clemons, William M., Bernhardt, Thomas G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418202/
https://www.ncbi.nlm.nih.gov/pubmed/37577621
http://dx.doi.org/10.1101/2023.08.01.551478
_version_ 1785088213912649728
author Marmont, Lindsey S.
Orta, Anna K.
Corey, Robin A.
Sychantha, David
Galliano, Ana Fernández
Li, Yancheng E.
Baileeves, Becca W.A.
Greene, Neil G.
Stansfeld, Phillip J.
Clemons, William M.
Bernhardt, Thomas G.
author_facet Marmont, Lindsey S.
Orta, Anna K.
Corey, Robin A.
Sychantha, David
Galliano, Ana Fernández
Li, Yancheng E.
Baileeves, Becca W.A.
Greene, Neil G.
Stansfeld, Phillip J.
Clemons, William M.
Bernhardt, Thomas G.
author_sort Marmont, Lindsey S.
collection PubMed
description Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways.
format Online
Article
Text
id pubmed-10418202
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104182022023-08-12 A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall Marmont, Lindsey S. Orta, Anna K. Corey, Robin A. Sychantha, David Galliano, Ana Fernández Li, Yancheng E. Baileeves, Becca W.A. Greene, Neil G. Stansfeld, Phillip J. Clemons, William M. Bernhardt, Thomas G. bioRxiv Article Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways. Cold Spring Harbor Laboratory 2023-08-01 /pmc/articles/PMC10418202/ /pubmed/37577621 http://dx.doi.org/10.1101/2023.08.01.551478 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Marmont, Lindsey S.
Orta, Anna K.
Corey, Robin A.
Sychantha, David
Galliano, Ana Fernández
Li, Yancheng E.
Baileeves, Becca W.A.
Greene, Neil G.
Stansfeld, Phillip J.
Clemons, William M.
Bernhardt, Thomas G.
A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
title A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
title_full A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
title_fullStr A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
title_full_unstemmed A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
title_short A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
title_sort feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418202/
https://www.ncbi.nlm.nih.gov/pubmed/37577621
http://dx.doi.org/10.1101/2023.08.01.551478
work_keys_str_mv AT marmontlindseys afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT ortaannak afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT coreyrobina afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT sychanthadavid afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT gallianoanafernandez afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT liyanchenge afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT baileevesbeccawa afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT greeneneilg afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT stansfeldphillipj afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT clemonswilliamm afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT bernhardtthomasg afeedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT marmontlindseys feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT ortaannak feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT coreyrobina feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT sychanthadavid feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT gallianoanafernandez feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT liyanchenge feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT baileevesbeccawa feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT greeneneilg feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT stansfeldphillipj feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT clemonswilliamm feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall
AT bernhardtthomasg feedbackcontrolmechanismgovernsthesynthesisoflipidlinkedprecursorsofthebacterialcellwall