Cargando…
Meta-analytic decoding of the cortical gradient of functional connectivity
Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end, and transmodal regions ass...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418206/ https://www.ncbi.nlm.nih.gov/pubmed/37577598 http://dx.doi.org/10.1101/2023.08.01.551505 |
_version_ | 1785088214421209088 |
---|---|
author | Peraza, Julio A. Salo, Taylor Riedel, Michael C. Bottenhorn, Katherine L. Poline, Jean-Baptiste Dockès, Jérôme Kent, James D. Bartley, Jessica E. Flannery, Jessica S. Hill-Bowen, Lauren D. Lobo, Rosario Pintos Poudel, Ranjita Ray, Kimberly L. Robinson, Jennifer L. Laird, Robert W. Sutherland, Matthew T. de la Vega, Alejandro Laird, Angela R. |
author_facet | Peraza, Julio A. Salo, Taylor Riedel, Michael C. Bottenhorn, Katherine L. Poline, Jean-Baptiste Dockès, Jérôme Kent, James D. Bartley, Jessica E. Flannery, Jessica S. Hill-Bowen, Lauren D. Lobo, Rosario Pintos Poudel, Ranjita Ray, Kimberly L. Robinson, Jennifer L. Laird, Robert W. Sutherland, Matthew T. de la Vega, Alejandro Laird, Angela R. |
author_sort | Peraza, Julio A. |
collection | PubMed |
description | Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end, and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to more fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a small number of segments determined by a K-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Taken together, the current work aims to provide recommendations on best practices, along with flexible methods, for gradient-based functional decoding of fMRI data. |
format | Online Article Text |
id | pubmed-10418206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104182062023-08-12 Meta-analytic decoding of the cortical gradient of functional connectivity Peraza, Julio A. Salo, Taylor Riedel, Michael C. Bottenhorn, Katherine L. Poline, Jean-Baptiste Dockès, Jérôme Kent, James D. Bartley, Jessica E. Flannery, Jessica S. Hill-Bowen, Lauren D. Lobo, Rosario Pintos Poudel, Ranjita Ray, Kimberly L. Robinson, Jennifer L. Laird, Robert W. Sutherland, Matthew T. de la Vega, Alejandro Laird, Angela R. bioRxiv Article Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end, and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to more fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a small number of segments determined by a K-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Taken together, the current work aims to provide recommendations on best practices, along with flexible methods, for gradient-based functional decoding of fMRI data. Cold Spring Harbor Laboratory 2023-08-03 /pmc/articles/PMC10418206/ /pubmed/37577598 http://dx.doi.org/10.1101/2023.08.01.551505 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Peraza, Julio A. Salo, Taylor Riedel, Michael C. Bottenhorn, Katherine L. Poline, Jean-Baptiste Dockès, Jérôme Kent, James D. Bartley, Jessica E. Flannery, Jessica S. Hill-Bowen, Lauren D. Lobo, Rosario Pintos Poudel, Ranjita Ray, Kimberly L. Robinson, Jennifer L. Laird, Robert W. Sutherland, Matthew T. de la Vega, Alejandro Laird, Angela R. Meta-analytic decoding of the cortical gradient of functional connectivity |
title | Meta-analytic decoding of the cortical gradient of functional connectivity |
title_full | Meta-analytic decoding of the cortical gradient of functional connectivity |
title_fullStr | Meta-analytic decoding of the cortical gradient of functional connectivity |
title_full_unstemmed | Meta-analytic decoding of the cortical gradient of functional connectivity |
title_short | Meta-analytic decoding of the cortical gradient of functional connectivity |
title_sort | meta-analytic decoding of the cortical gradient of functional connectivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418206/ https://www.ncbi.nlm.nih.gov/pubmed/37577598 http://dx.doi.org/10.1101/2023.08.01.551505 |
work_keys_str_mv | AT perazajulioa metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT salotaylor metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT riedelmichaelc metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT bottenhornkatherinel metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT polinejeanbaptiste metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT dockesjerome metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT kentjamesd metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT bartleyjessicae metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT flanneryjessicas metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT hillbowenlaurend metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT loborosariopintos metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT poudelranjita metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT raykimberlyl metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT robinsonjenniferl metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT lairdrobertw metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT sutherlandmatthewt metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT delavegaalejandro metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity AT lairdangelar metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity |