Cargando…

Meta-analytic decoding of the cortical gradient of functional connectivity

Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end, and transmodal regions ass...

Descripción completa

Detalles Bibliográficos
Autores principales: Peraza, Julio A., Salo, Taylor, Riedel, Michael C., Bottenhorn, Katherine L., Poline, Jean-Baptiste, Dockès, Jérôme, Kent, James D., Bartley, Jessica E., Flannery, Jessica S., Hill-Bowen, Lauren D., Lobo, Rosario Pintos, Poudel, Ranjita, Ray, Kimberly L., Robinson, Jennifer L., Laird, Robert W., Sutherland, Matthew T., de la Vega, Alejandro, Laird, Angela R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418206/
https://www.ncbi.nlm.nih.gov/pubmed/37577598
http://dx.doi.org/10.1101/2023.08.01.551505
_version_ 1785088214421209088
author Peraza, Julio A.
Salo, Taylor
Riedel, Michael C.
Bottenhorn, Katherine L.
Poline, Jean-Baptiste
Dockès, Jérôme
Kent, James D.
Bartley, Jessica E.
Flannery, Jessica S.
Hill-Bowen, Lauren D.
Lobo, Rosario Pintos
Poudel, Ranjita
Ray, Kimberly L.
Robinson, Jennifer L.
Laird, Robert W.
Sutherland, Matthew T.
de la Vega, Alejandro
Laird, Angela R.
author_facet Peraza, Julio A.
Salo, Taylor
Riedel, Michael C.
Bottenhorn, Katherine L.
Poline, Jean-Baptiste
Dockès, Jérôme
Kent, James D.
Bartley, Jessica E.
Flannery, Jessica S.
Hill-Bowen, Lauren D.
Lobo, Rosario Pintos
Poudel, Ranjita
Ray, Kimberly L.
Robinson, Jennifer L.
Laird, Robert W.
Sutherland, Matthew T.
de la Vega, Alejandro
Laird, Angela R.
author_sort Peraza, Julio A.
collection PubMed
description Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end, and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to more fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a small number of segments determined by a K-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Taken together, the current work aims to provide recommendations on best practices, along with flexible methods, for gradient-based functional decoding of fMRI data.
format Online
Article
Text
id pubmed-10418206
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104182062023-08-12 Meta-analytic decoding of the cortical gradient of functional connectivity Peraza, Julio A. Salo, Taylor Riedel, Michael C. Bottenhorn, Katherine L. Poline, Jean-Baptiste Dockès, Jérôme Kent, James D. Bartley, Jessica E. Flannery, Jessica S. Hill-Bowen, Lauren D. Lobo, Rosario Pintos Poudel, Ranjita Ray, Kimberly L. Robinson, Jennifer L. Laird, Robert W. Sutherland, Matthew T. de la Vega, Alejandro Laird, Angela R. bioRxiv Article Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end, and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to more fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a small number of segments determined by a K-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Taken together, the current work aims to provide recommendations on best practices, along with flexible methods, for gradient-based functional decoding of fMRI data. Cold Spring Harbor Laboratory 2023-08-03 /pmc/articles/PMC10418206/ /pubmed/37577598 http://dx.doi.org/10.1101/2023.08.01.551505 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Peraza, Julio A.
Salo, Taylor
Riedel, Michael C.
Bottenhorn, Katherine L.
Poline, Jean-Baptiste
Dockès, Jérôme
Kent, James D.
Bartley, Jessica E.
Flannery, Jessica S.
Hill-Bowen, Lauren D.
Lobo, Rosario Pintos
Poudel, Ranjita
Ray, Kimberly L.
Robinson, Jennifer L.
Laird, Robert W.
Sutherland, Matthew T.
de la Vega, Alejandro
Laird, Angela R.
Meta-analytic decoding of the cortical gradient of functional connectivity
title Meta-analytic decoding of the cortical gradient of functional connectivity
title_full Meta-analytic decoding of the cortical gradient of functional connectivity
title_fullStr Meta-analytic decoding of the cortical gradient of functional connectivity
title_full_unstemmed Meta-analytic decoding of the cortical gradient of functional connectivity
title_short Meta-analytic decoding of the cortical gradient of functional connectivity
title_sort meta-analytic decoding of the cortical gradient of functional connectivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418206/
https://www.ncbi.nlm.nih.gov/pubmed/37577598
http://dx.doi.org/10.1101/2023.08.01.551505
work_keys_str_mv AT perazajulioa metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT salotaylor metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT riedelmichaelc metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT bottenhornkatherinel metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT polinejeanbaptiste metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT dockesjerome metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT kentjamesd metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT bartleyjessicae metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT flanneryjessicas metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT hillbowenlaurend metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT loborosariopintos metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT poudelranjita metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT raykimberlyl metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT robinsonjenniferl metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT lairdrobertw metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT sutherlandmatthewt metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT delavegaalejandro metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity
AT lairdangelar metaanalyticdecodingofthecorticalgradientoffunctionalconnectivity