Cargando…
Compound models and Pearson residuals for normalization of single-cell RNA-seq data without UMIs
Before downstream analysis can reveal biological signals in single-cell RNA sequencing data, normalization and variance stabilization are required to remove technical noise. Recently, Pearson residuals based on negative binomial models have been suggested as an efficient normalization approach. Thes...
Autores principales: | Lause, Jan, Ziegenhain, Christoph, Hartmanis, Leonard, Berens, Philipp, Kobak, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418209/ https://www.ncbi.nlm.nih.gov/pubmed/37577688 http://dx.doi.org/10.1101/2023.08.02.551637 |
Ejemplares similares
-
Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
por: Lause, Jan, et al.
Publicado: (2021) -
zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs
por: Parekh, Swati, et al.
Publicado: (2018) -
Non-linear Normalization for Non-UMI Single Cell RNA-Seq
por: Wu, Zhijin, et al.
Publicado: (2021) -
Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
por: You, Yue, et al.
Publicado: (2021) -
The art of using t-SNE for single-cell transcriptomics
por: Kobak, Dmitry, et al.
Publicado: (2019)