Cargando…
Transformation of value signaling in a striatopallidal circuit
The ways in which sensory stimuli acquire motivational valence through association with other stimuli is one of the simplest forms of learning. Though we have identified many brain nuclei that play various roles in reward processing, a significant gap remains in understanding how value encoding tran...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418236/ https://www.ncbi.nlm.nih.gov/pubmed/37577586 http://dx.doi.org/10.1101/2023.08.01.551547 |
_version_ | 1785088220120219648 |
---|---|
author | Lee, Donghyung Liu, Lillian Root, Cory M. |
author_facet | Lee, Donghyung Liu, Lillian Root, Cory M. |
author_sort | Lee, Donghyung |
collection | PubMed |
description | The ways in which sensory stimuli acquire motivational valence through association with other stimuli is one of the simplest forms of learning. Though we have identified many brain nuclei that play various roles in reward processing, a significant gap remains in understanding how value encoding transforms through the layers of sensory processing. To address this gap, we carried out a comparative investigation of the olfactory tubercle (OT), and the ventral pallidum (VP) - 2 connected nuclei of the basal ganglia which have both been implicated in reward processing. First, using anterograde and retrograde tracing, we show that both D1 and D2 neurons of the OT project primarily to the VP and minimally elsewhere. Using 2-photon calcium imaging, we then investigated how the identity of the odor and reward contingency of the odor are differently encoded by neurons in either structure during a classical conditioning paradigm. We find that VP neurons robustly encode value, but not identity, in low-dimensional space. In contrast, OT neurons primarily encode odor identity in high-dimensional space. Though D1 OT neurons showed larger response vectors to rewarded odors than other odors, we propose this is better interpreted as identity encoding with enhanced contrast rather than as value encoding. Finally, using a novel conditioning paradigm that decouples reward contingency and licking vigor, we show that both features are encoded by non-overlapping VP neurons. These results provide a novel framework for the striatopallidal circuit in which a high-dimensional encoding of stimulus identity is collapsed onto a low-dimensional encoding of motivational valence. |
format | Online Article Text |
id | pubmed-10418236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104182362023-08-12 Transformation of value signaling in a striatopallidal circuit Lee, Donghyung Liu, Lillian Root, Cory M. bioRxiv Article The ways in which sensory stimuli acquire motivational valence through association with other stimuli is one of the simplest forms of learning. Though we have identified many brain nuclei that play various roles in reward processing, a significant gap remains in understanding how value encoding transforms through the layers of sensory processing. To address this gap, we carried out a comparative investigation of the olfactory tubercle (OT), and the ventral pallidum (VP) - 2 connected nuclei of the basal ganglia which have both been implicated in reward processing. First, using anterograde and retrograde tracing, we show that both D1 and D2 neurons of the OT project primarily to the VP and minimally elsewhere. Using 2-photon calcium imaging, we then investigated how the identity of the odor and reward contingency of the odor are differently encoded by neurons in either structure during a classical conditioning paradigm. We find that VP neurons robustly encode value, but not identity, in low-dimensional space. In contrast, OT neurons primarily encode odor identity in high-dimensional space. Though D1 OT neurons showed larger response vectors to rewarded odors than other odors, we propose this is better interpreted as identity encoding with enhanced contrast rather than as value encoding. Finally, using a novel conditioning paradigm that decouples reward contingency and licking vigor, we show that both features are encoded by non-overlapping VP neurons. These results provide a novel framework for the striatopallidal circuit in which a high-dimensional encoding of stimulus identity is collapsed onto a low-dimensional encoding of motivational valence. Cold Spring Harbor Laboratory 2023-08-03 /pmc/articles/PMC10418236/ /pubmed/37577586 http://dx.doi.org/10.1101/2023.08.01.551547 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Lee, Donghyung Liu, Lillian Root, Cory M. Transformation of value signaling in a striatopallidal circuit |
title | Transformation of value signaling in a striatopallidal circuit |
title_full | Transformation of value signaling in a striatopallidal circuit |
title_fullStr | Transformation of value signaling in a striatopallidal circuit |
title_full_unstemmed | Transformation of value signaling in a striatopallidal circuit |
title_short | Transformation of value signaling in a striatopallidal circuit |
title_sort | transformation of value signaling in a striatopallidal circuit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418236/ https://www.ncbi.nlm.nih.gov/pubmed/37577586 http://dx.doi.org/10.1101/2023.08.01.551547 |
work_keys_str_mv | AT leedonghyung transformationofvaluesignalinginastriatopallidalcircuit AT liulillian transformationofvaluesignalinginastriatopallidalcircuit AT rootcorym transformationofvaluesignalinginastriatopallidalcircuit |