Cargando…
A Benchmark Study of Graph Models for Molecular Acute Toxicity Prediction
With the wide usage of organic compounds, the assessment of their acute toxicity has drawn great attention to reduce animal testing and human labor. The development of graph models provides new opportunities for acute toxicity prediction. In this study, five graph models (message-passing neural netw...
Autores principales: | Ketkar, Rajas, Liu, Yue, Wang, Hengji, Tian, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418346/ https://www.ncbi.nlm.nih.gov/pubmed/37569341 http://dx.doi.org/10.3390/ijms241511966 |
Ejemplares similares
-
NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics
por: Said, Anwar, et al.
Publicado: (2023) -
Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark
por: Carta, Antonio, et al.
Publicado: (2022) -
Systematic benchmark of substructure search in molecular graphs - From Ullmann to VF2
por: Ehrlich, Hans-Christian, et al.
Publicado: (2012) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
Benchmarking natural-language parsers for biological applications using dependency graphs
por: Clegg, Andrew B, et al.
Publicado: (2007)