Cargando…

Dysregulations of Key Regulators of Angiogenesis and Inflammation in Abdominal Aortic Aneurysm

Abdominal aortic aneurysm (AAA) is a chronic vascular disease caused by localized weakening and broadening of the abdominal aorta. AAA is a clearly underdiagnosed disease and is burdened with a high mortality rate (65–85%) from AAA rupture. Studies indicate that abnormal regulation of angiogenesis a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zalewski, Daniel, Chmiel, Paulina, Kołodziej, Przemysław, Borowski, Grzegorz, Feldo, Marcin, Kocki, Janusz, Bogucka-Kocka, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418409/
https://www.ncbi.nlm.nih.gov/pubmed/37569462
http://dx.doi.org/10.3390/ijms241512087
Descripción
Sumario:Abdominal aortic aneurysm (AAA) is a chronic vascular disease caused by localized weakening and broadening of the abdominal aorta. AAA is a clearly underdiagnosed disease and is burdened with a high mortality rate (65–85%) from AAA rupture. Studies indicate that abnormal regulation of angiogenesis and inflammation contributes to progression and onset of this disease; however, dysregulations in the molecular pathways associated with this disease are not yet fully explained. Therefore, in our study, we aimed to identify dysregulations in the key regulators of angiogenesis and inflammation in patients with AAA in peripheral blood mononuclear cells (using qPCR) and plasma samples (using ELISA). Expression levels of ANGPT1, CXCL8, PDGFA, TGFB1, VEGFB, and VEGFC and plasma levels of TGF-alpha, TGF-beta 1, VEGF-A, and VEGF-C were found to be significantly altered in the AAA group compared to the control subjects without AAA. Associations between analyzed factors and risk factors or biochemical parameters were also explored. Any of the analyzed factors was associated with the size of the aneurysm. The presented study identified dysregulations in key angiogenesis- and inflammation-related factors potentially involved in AAA formation, giving new insight into the molecular pathways involved in the development of this disease and providing candidates for biomarkers that could serve as diagnostic or therapeutic targets.