Cargando…
DeepSATA: A Deep Learning-Based Sequence Analyzer Incorporating the Transcription Factor Binding Affinity to Dissect the Effects of Non-Coding Genetic Variants
Utilizing large-scale epigenomics data, deep learning tools can predict the regulatory activity of genomic sequences, annotate non-coding genetic variants, and uncover mechanisms behind complex traits. However, these tools primarily rely on human or mouse data for training, limiting their performanc...
Autores principales: | Ma, Wenlong, Fu, Yang, Bao, Yongzhou, Wang, Zhen, Lei, Bowen, Zheng, Weigang, Wang, Chao, Liu, Yuwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418434/ https://www.ncbi.nlm.nih.gov/pubmed/37569400 http://dx.doi.org/10.3390/ijms241512023 |
Ejemplares similares
-
Spectrophotometric analysis of thrombolytic activity: SATA assay
por: Zamanlu, Masumeh, et al.
Publicado: (2018) -
Modeling Spatial Heterogeneity with Excess Zeroes from School
Absenteeism dSata
por: Song, Xiaoxiao, et al.
Publicado: (2015) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
Sulphated alumina tungstic acid (SATA): a highly efficient and novel heterogeneous mesostructured catalyst for the synthesis of pyrazole carbonitrile derivatives and evaluation of green metrics
por: Rather, Ryhan Abdullah, et al.
Publicado: (2020) -
Deep Learning
to Analyze Sliding Drops
por: Shumaly, Sajjad, et al.
Publicado: (2023)