Cargando…
Structure-Informed Protein Language Models are Robust Predictors for Variant Effects
Predicting protein variant effects through machine learning is often challenged by the scarcity of experimentally measured effect labels. Recently, protein language models (pLMs) emerge as zero-shot predictors without the need of effect labels, by modeling the evolutionary distribution of functional...
Autores principales: | Sun, Yuanfei, Shen, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418537/ https://www.ncbi.nlm.nih.gov/pubmed/37577664 http://dx.doi.org/10.21203/rs.3.rs-3219092/v1 |
Ejemplares similares
-
DNA language models are powerful predictors of genome-wide variant effects
por: Benegas, Gonzalo, et al.
Publicado: (2023) -
Embeddings from protein language models predict conservation and variant effects
por: Marquet, Céline, et al.
Publicado: (2021) -
Robust Identification System for Spanish Sign Language Based on Three-Dimensional Frame Information
por: Galván-Ruiz, Jesús, et al.
Publicado: (2023) -
Functional genomics of OCTN2 variants informs protein-specific variant effect predictor for Carnitine Transporter Deficiency
por: Koleske, Megan L., et al.
Publicado: (2022) -
Robustness in language and speech technology
por: Ide, Nancy, et al.
Publicado: (2010)