Cargando…
Human and computer attention in assessing genetic conditions
Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves bette...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418573/ https://www.ncbi.nlm.nih.gov/pubmed/37577564 http://dx.doi.org/10.1101/2023.07.26.23293119 |
_version_ | 1785088296208039936 |
---|---|
author | Duong, Dat Johny, Anna Rose Hanchard, Suzanna Ledgister Fortney, Chris Hellmann, Fabio Hu, Ping Javanmardi, Behnam Moosa, Shahida Patel, Tanviben Persky, Susan Sümer, Ömer Tekendo-Ngongang, Cedrik Hsieh, Tzung-Chien Waikel, Rebekah L. André, Elisabeth Krawitz, Peter Solomon, Benjamin D. |
author_facet | Duong, Dat Johny, Anna Rose Hanchard, Suzanna Ledgister Fortney, Chris Hellmann, Fabio Hu, Ping Javanmardi, Behnam Moosa, Shahida Patel, Tanviben Persky, Susan Sümer, Ömer Tekendo-Ngongang, Cedrik Hsieh, Tzung-Chien Waikel, Rebekah L. André, Elisabeth Krawitz, Peter Solomon, Benjamin D. |
author_sort | Duong, Dat |
collection | PubMed |
description | Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves better understanding how AI classifiers assess images compared to humans. To explore this, we performed eye-tracking analyses of geneticist clinicians and non-clinicians. We compared results to DL-based saliency maps. We found that human visual attention when assessing images differs greatly from the parts of images weighted by the DL model. Further, individuals tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians. |
format | Online Article Text |
id | pubmed-10418573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104185732023-08-12 Human and computer attention in assessing genetic conditions Duong, Dat Johny, Anna Rose Hanchard, Suzanna Ledgister Fortney, Chris Hellmann, Fabio Hu, Ping Javanmardi, Behnam Moosa, Shahida Patel, Tanviben Persky, Susan Sümer, Ömer Tekendo-Ngongang, Cedrik Hsieh, Tzung-Chien Waikel, Rebekah L. André, Elisabeth Krawitz, Peter Solomon, Benjamin D. medRxiv Article Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves better understanding how AI classifiers assess images compared to humans. To explore this, we performed eye-tracking analyses of geneticist clinicians and non-clinicians. We compared results to DL-based saliency maps. We found that human visual attention when assessing images differs greatly from the parts of images weighted by the DL model. Further, individuals tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians. Cold Spring Harbor Laboratory 2023-07-28 /pmc/articles/PMC10418573/ /pubmed/37577564 http://dx.doi.org/10.1101/2023.07.26.23293119 Text en https://creativecommons.org/publicdomain/zero/1.0/This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license (https://creativecommons.org/publicdomain/zero/1.0/) . |
spellingShingle | Article Duong, Dat Johny, Anna Rose Hanchard, Suzanna Ledgister Fortney, Chris Hellmann, Fabio Hu, Ping Javanmardi, Behnam Moosa, Shahida Patel, Tanviben Persky, Susan Sümer, Ömer Tekendo-Ngongang, Cedrik Hsieh, Tzung-Chien Waikel, Rebekah L. André, Elisabeth Krawitz, Peter Solomon, Benjamin D. Human and computer attention in assessing genetic conditions |
title | Human and computer attention in assessing genetic conditions |
title_full | Human and computer attention in assessing genetic conditions |
title_fullStr | Human and computer attention in assessing genetic conditions |
title_full_unstemmed | Human and computer attention in assessing genetic conditions |
title_short | Human and computer attention in assessing genetic conditions |
title_sort | human and computer attention in assessing genetic conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418573/ https://www.ncbi.nlm.nih.gov/pubmed/37577564 http://dx.doi.org/10.1101/2023.07.26.23293119 |
work_keys_str_mv | AT duongdat humanandcomputerattentioninassessinggeneticconditions AT johnyannarose humanandcomputerattentioninassessinggeneticconditions AT hanchardsuzannaledgister humanandcomputerattentioninassessinggeneticconditions AT fortneychris humanandcomputerattentioninassessinggeneticconditions AT hellmannfabio humanandcomputerattentioninassessinggeneticconditions AT huping humanandcomputerattentioninassessinggeneticconditions AT javanmardibehnam humanandcomputerattentioninassessinggeneticconditions AT moosashahida humanandcomputerattentioninassessinggeneticconditions AT pateltanviben humanandcomputerattentioninassessinggeneticconditions AT perskysusan humanandcomputerattentioninassessinggeneticconditions AT sumeromer humanandcomputerattentioninassessinggeneticconditions AT tekendongongangcedrik humanandcomputerattentioninassessinggeneticconditions AT hsiehtzungchien humanandcomputerattentioninassessinggeneticconditions AT waikelrebekahl humanandcomputerattentioninassessinggeneticconditions AT andreelisabeth humanandcomputerattentioninassessinggeneticconditions AT krawitzpeter humanandcomputerattentioninassessinggeneticconditions AT solomonbenjamind humanandcomputerattentioninassessinggeneticconditions |