Cargando…

Human and computer attention in assessing genetic conditions

Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves bette...

Descripción completa

Detalles Bibliográficos
Autores principales: Duong, Dat, Johny, Anna Rose, Hanchard, Suzanna Ledgister, Fortney, Chris, Hellmann, Fabio, Hu, Ping, Javanmardi, Behnam, Moosa, Shahida, Patel, Tanviben, Persky, Susan, Sümer, Ömer, Tekendo-Ngongang, Cedrik, Hsieh, Tzung-Chien, Waikel, Rebekah L., André, Elisabeth, Krawitz, Peter, Solomon, Benjamin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418573/
https://www.ncbi.nlm.nih.gov/pubmed/37577564
http://dx.doi.org/10.1101/2023.07.26.23293119
_version_ 1785088296208039936
author Duong, Dat
Johny, Anna Rose
Hanchard, Suzanna Ledgister
Fortney, Chris
Hellmann, Fabio
Hu, Ping
Javanmardi, Behnam
Moosa, Shahida
Patel, Tanviben
Persky, Susan
Sümer, Ömer
Tekendo-Ngongang, Cedrik
Hsieh, Tzung-Chien
Waikel, Rebekah L.
André, Elisabeth
Krawitz, Peter
Solomon, Benjamin D.
author_facet Duong, Dat
Johny, Anna Rose
Hanchard, Suzanna Ledgister
Fortney, Chris
Hellmann, Fabio
Hu, Ping
Javanmardi, Behnam
Moosa, Shahida
Patel, Tanviben
Persky, Susan
Sümer, Ömer
Tekendo-Ngongang, Cedrik
Hsieh, Tzung-Chien
Waikel, Rebekah L.
André, Elisabeth
Krawitz, Peter
Solomon, Benjamin D.
author_sort Duong, Dat
collection PubMed
description Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves better understanding how AI classifiers assess images compared to humans. To explore this, we performed eye-tracking analyses of geneticist clinicians and non-clinicians. We compared results to DL-based saliency maps. We found that human visual attention when assessing images differs greatly from the parts of images weighted by the DL model. Further, individuals tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians.
format Online
Article
Text
id pubmed-10418573
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104185732023-08-12 Human and computer attention in assessing genetic conditions Duong, Dat Johny, Anna Rose Hanchard, Suzanna Ledgister Fortney, Chris Hellmann, Fabio Hu, Ping Javanmardi, Behnam Moosa, Shahida Patel, Tanviben Persky, Susan Sümer, Ömer Tekendo-Ngongang, Cedrik Hsieh, Tzung-Chien Waikel, Rebekah L. André, Elisabeth Krawitz, Peter Solomon, Benjamin D. medRxiv Article Deep learning (DL) and other types of artificial intelligence (AI) are increasingly used in many biomedical areas, including genetics. One frequent use in medical genetics involves evaluating images of people with potential genetic conditions to help with diagnosis. A central question involves better understanding how AI classifiers assess images compared to humans. To explore this, we performed eye-tracking analyses of geneticist clinicians and non-clinicians. We compared results to DL-based saliency maps. We found that human visual attention when assessing images differs greatly from the parts of images weighted by the DL model. Further, individuals tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians. Cold Spring Harbor Laboratory 2023-07-28 /pmc/articles/PMC10418573/ /pubmed/37577564 http://dx.doi.org/10.1101/2023.07.26.23293119 Text en https://creativecommons.org/publicdomain/zero/1.0/This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license (https://creativecommons.org/publicdomain/zero/1.0/) .
spellingShingle Article
Duong, Dat
Johny, Anna Rose
Hanchard, Suzanna Ledgister
Fortney, Chris
Hellmann, Fabio
Hu, Ping
Javanmardi, Behnam
Moosa, Shahida
Patel, Tanviben
Persky, Susan
Sümer, Ömer
Tekendo-Ngongang, Cedrik
Hsieh, Tzung-Chien
Waikel, Rebekah L.
André, Elisabeth
Krawitz, Peter
Solomon, Benjamin D.
Human and computer attention in assessing genetic conditions
title Human and computer attention in assessing genetic conditions
title_full Human and computer attention in assessing genetic conditions
title_fullStr Human and computer attention in assessing genetic conditions
title_full_unstemmed Human and computer attention in assessing genetic conditions
title_short Human and computer attention in assessing genetic conditions
title_sort human and computer attention in assessing genetic conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418573/
https://www.ncbi.nlm.nih.gov/pubmed/37577564
http://dx.doi.org/10.1101/2023.07.26.23293119
work_keys_str_mv AT duongdat humanandcomputerattentioninassessinggeneticconditions
AT johnyannarose humanandcomputerattentioninassessinggeneticconditions
AT hanchardsuzannaledgister humanandcomputerattentioninassessinggeneticconditions
AT fortneychris humanandcomputerattentioninassessinggeneticconditions
AT hellmannfabio humanandcomputerattentioninassessinggeneticconditions
AT huping humanandcomputerattentioninassessinggeneticconditions
AT javanmardibehnam humanandcomputerattentioninassessinggeneticconditions
AT moosashahida humanandcomputerattentioninassessinggeneticconditions
AT pateltanviben humanandcomputerattentioninassessinggeneticconditions
AT perskysusan humanandcomputerattentioninassessinggeneticconditions
AT sumeromer humanandcomputerattentioninassessinggeneticconditions
AT tekendongongangcedrik humanandcomputerattentioninassessinggeneticconditions
AT hsiehtzungchien humanandcomputerattentioninassessinggeneticconditions
AT waikelrebekahl humanandcomputerattentioninassessinggeneticconditions
AT andreelisabeth humanandcomputerattentioninassessinggeneticconditions
AT krawitzpeter humanandcomputerattentioninassessinggeneticconditions
AT solomonbenjamind humanandcomputerattentioninassessinggeneticconditions