Cargando…
Text mining biomedical literature to identify extremely unbalanced data for digital epidemiology and systematic reviews: dataset and methods for a SARS-CoV-2 genomic epidemiology study
There are many studies that require researchers to extract specific information from the published literature, such as details about sequence records or about a randomized control trial. While manual extraction is cost efficient for small studies, larger studies such as systematic reviews are much m...
Autores principales: | Weissenbacher, Davy, O’Connor, Karen, Klein, Ari, Golder, Su, Flores, Ivan, Elyaderani, Amir, Scotch, Matthew, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418574/ https://www.ncbi.nlm.nih.gov/pubmed/37577535 http://dx.doi.org/10.1101/2023.07.29.23293370 |
Ejemplares similares
-
Patient-Related Metadata Reported in Sequencing Studies of SARS-CoV-2: Protocol for a Scoping Review and Bibliometric Analysis
por: O’Connor, Karen, et al.
Publicado: (2023) -
Towards scaling Twitter for digital epidemiology of birth defects
por: Klein, Ari Z., et al.
Publicado: (2019) -
Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK
por: Golder, S, et al.
Publicado: (2020) -
Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature
por: Magge, Arjun, et al.
Publicado: (2019) -
A chronological and geographical analysis of personal reports of COVID-19 on
Twitter from the UK
por: Golder, Su, et al.
Publicado: (2022)