Cargando…
Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress
The WRKY gene family in plants regulates the plant’s response to drought through regulatory networks and hormone signaling. AfWRKY20 (MT859405) was cloned from Amorpha fruticosa (A. fruticosa) seedlings using RT-PCR. The binding properties of the AfWRKY20 protein and the W-box (a DNA cis-acting elem...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418629/ https://www.ncbi.nlm.nih.gov/pubmed/37569607 http://dx.doi.org/10.3390/ijms241512231 |
_version_ | 1785088310402613248 |
---|---|
author | Li, Danni Gu, Baoxiang Huang, Chunxi Shen, Jiayi Wang, Xin Guo, Jianan Yu, Ruiqiang Mou, Sirui Guan, Qingjie |
author_facet | Li, Danni Gu, Baoxiang Huang, Chunxi Shen, Jiayi Wang, Xin Guo, Jianan Yu, Ruiqiang Mou, Sirui Guan, Qingjie |
author_sort | Li, Danni |
collection | PubMed |
description | The WRKY gene family in plants regulates the plant’s response to drought through regulatory networks and hormone signaling. AfWRKY20 (MT859405) was cloned from Amorpha fruticosa (A. fruticosa) seedlings using RT-PCR. The binding properties of the AfWRKY20 protein and the W-box (a DNA cis-acting element) were verified both in vivo and in vitro using EMSA and Dual-Luciferase activity assays. RT-qPCR detected that the total expression level of AfWRKY20 in leaves and roots was 22 times higher in the 30% PEG6000 simulated drought treatment compared to the untreated group. Under the simulated drought stress treatments of sorbitol and abscisic acid (ABA), the transgenic tobacco with the AfWRKY20 gene showed enhanced drought resistance at the germination stage, with significantly increased germination rate, green leaf rate, fresh weight, and root length compared to the wild-type (WT) tobacco. In addition, the superoxide dismutase (SOD) activity, chlorophyll content, and Fv/Fm ratio of AfWRKY20 transgenic tobacco were significantly higher than those of the WT tobacco under natural drought stress, while the malondialdehyde (MDA) content and 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining levels were lower. The expression levels of oxidation kinase genes (NbSOD, NbPOD, and NbCAT) in transgenic tobacco under drought stress were significantly higher than those in WT tobacco. This enhancement in gene expression improved the ability of transgenic tobacco to detoxify reactive oxygen species (ROS). The survival rate of transgenic tobacco after natural drought rehydration was four times higher than that of WT tobacco. In summary, this study revealed the regulatory mechanism of AfWRKY20 in response to drought stress-induced ABA signaling, particularly in relation to ROS. This finding provides a theoretical basis for understanding the pathways of WRKY20 involved in drought stress, and offers genetic resources for molecular plant breeding aimed at enhancing drought resistance. |
format | Online Article Text |
id | pubmed-10418629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104186292023-08-12 Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress Li, Danni Gu, Baoxiang Huang, Chunxi Shen, Jiayi Wang, Xin Guo, Jianan Yu, Ruiqiang Mou, Sirui Guan, Qingjie Int J Mol Sci Article The WRKY gene family in plants regulates the plant’s response to drought through regulatory networks and hormone signaling. AfWRKY20 (MT859405) was cloned from Amorpha fruticosa (A. fruticosa) seedlings using RT-PCR. The binding properties of the AfWRKY20 protein and the W-box (a DNA cis-acting element) were verified both in vivo and in vitro using EMSA and Dual-Luciferase activity assays. RT-qPCR detected that the total expression level of AfWRKY20 in leaves and roots was 22 times higher in the 30% PEG6000 simulated drought treatment compared to the untreated group. Under the simulated drought stress treatments of sorbitol and abscisic acid (ABA), the transgenic tobacco with the AfWRKY20 gene showed enhanced drought resistance at the germination stage, with significantly increased germination rate, green leaf rate, fresh weight, and root length compared to the wild-type (WT) tobacco. In addition, the superoxide dismutase (SOD) activity, chlorophyll content, and Fv/Fm ratio of AfWRKY20 transgenic tobacco were significantly higher than those of the WT tobacco under natural drought stress, while the malondialdehyde (MDA) content and 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining levels were lower. The expression levels of oxidation kinase genes (NbSOD, NbPOD, and NbCAT) in transgenic tobacco under drought stress were significantly higher than those in WT tobacco. This enhancement in gene expression improved the ability of transgenic tobacco to detoxify reactive oxygen species (ROS). The survival rate of transgenic tobacco after natural drought rehydration was four times higher than that of WT tobacco. In summary, this study revealed the regulatory mechanism of AfWRKY20 in response to drought stress-induced ABA signaling, particularly in relation to ROS. This finding provides a theoretical basis for understanding the pathways of WRKY20 involved in drought stress, and offers genetic resources for molecular plant breeding aimed at enhancing drought resistance. MDPI 2023-07-31 /pmc/articles/PMC10418629/ /pubmed/37569607 http://dx.doi.org/10.3390/ijms241512231 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Danni Gu, Baoxiang Huang, Chunxi Shen, Jiayi Wang, Xin Guo, Jianan Yu, Ruiqiang Mou, Sirui Guan, Qingjie Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress |
title | Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress |
title_full | Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress |
title_fullStr | Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress |
title_full_unstemmed | Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress |
title_short | Functional Study of Amorpha fruticosa WRKY20 Gene in Response to Drought Stress |
title_sort | functional study of amorpha fruticosa wrky20 gene in response to drought stress |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418629/ https://www.ncbi.nlm.nih.gov/pubmed/37569607 http://dx.doi.org/10.3390/ijms241512231 |
work_keys_str_mv | AT lidanni functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT gubaoxiang functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT huangchunxi functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT shenjiayi functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT wangxin functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT guojianan functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT yuruiqiang functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT mousirui functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress AT guanqingjie functionalstudyofamorphafruticosawrky20geneinresponsetodroughtstress |