Cargando…
Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes
Essential oils (EOs) are plant mixtures that are known to present strong bioactivities, including a wide antimicrobial action. Biofilms are microbial sessile structures that represent the default mode of growth of microorganisms in most environments. This study focused on the antimicrobial action of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418746/ https://www.ncbi.nlm.nih.gov/pubmed/37569162 http://dx.doi.org/10.3390/foods12152893 |
_version_ | 1785088339534151680 |
---|---|
author | Kolypetri, Sonia Kostoglou, Dimitra Nikolaou, Anastasios Kourkoutas, Yiannis Giaouris, Efstathios |
author_facet | Kolypetri, Sonia Kostoglou, Dimitra Nikolaou, Anastasios Kourkoutas, Yiannis Giaouris, Efstathios |
author_sort | Kolypetri, Sonia |
collection | PubMed |
description | Essential oils (EOs) are plant mixtures that are known to present strong bioactivities, including a wide antimicrobial action. Biofilms are microbial sessile structures that represent the default mode of growth of microorganisms in most environments. This study focused on the antimicrobial action of the EO extracted from one of the most representative oregano species, that is, Origanum vulgare (subsp. hirtum), against two important foodborne pathogens, Salmonella enterica (serovar Typhimurium) and Listeria monocytogenes. For this, the minimum inhibitory concentrations of the EO against the planktonic and biofilm growth of each bacterium were determined (MICs, MBICs), together with the minimum bactericidal and biofilm eradication concentrations (MBCs, MBECs). The EO was also analyzed for its chemical composition by gas chromatography—mass spectrometry analysis (GC-MS). The influence of EO exposure on the expression of some important virulence genes (hly, inlA, inlB and prfA) was also studied in L. monocytogenes. Results revealed a strong antibacterial and antibiofilm action with MICs and MBICs ranging from 0.03% to 0.06% (v/v) and from 0.06% to 0.13% (v/v), respectively. The application of the EO at 6.25% (v/v) for 15 min resulted in the total eradication of the biofilm cells of both pathogens. The EO was mainly composed of thymol, p-cymene, γ-terpinene and carvacrol. The 3 h exposure of L. monocytogenes planktonic cells to the EO at its MBIC (0.06% v/v) resulted in the significant downregulation of all the studied genes (p < 0.05). To sum, the results obtained advocate for the further exploitation of the antimicrobial action of oregano EO in food and health applications. |
format | Online Article Text |
id | pubmed-10418746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104187462023-08-12 Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes Kolypetri, Sonia Kostoglou, Dimitra Nikolaou, Anastasios Kourkoutas, Yiannis Giaouris, Efstathios Foods Article Essential oils (EOs) are plant mixtures that are known to present strong bioactivities, including a wide antimicrobial action. Biofilms are microbial sessile structures that represent the default mode of growth of microorganisms in most environments. This study focused on the antimicrobial action of the EO extracted from one of the most representative oregano species, that is, Origanum vulgare (subsp. hirtum), against two important foodborne pathogens, Salmonella enterica (serovar Typhimurium) and Listeria monocytogenes. For this, the minimum inhibitory concentrations of the EO against the planktonic and biofilm growth of each bacterium were determined (MICs, MBICs), together with the minimum bactericidal and biofilm eradication concentrations (MBCs, MBECs). The EO was also analyzed for its chemical composition by gas chromatography—mass spectrometry analysis (GC-MS). The influence of EO exposure on the expression of some important virulence genes (hly, inlA, inlB and prfA) was also studied in L. monocytogenes. Results revealed a strong antibacterial and antibiofilm action with MICs and MBICs ranging from 0.03% to 0.06% (v/v) and from 0.06% to 0.13% (v/v), respectively. The application of the EO at 6.25% (v/v) for 15 min resulted in the total eradication of the biofilm cells of both pathogens. The EO was mainly composed of thymol, p-cymene, γ-terpinene and carvacrol. The 3 h exposure of L. monocytogenes planktonic cells to the EO at its MBIC (0.06% v/v) resulted in the significant downregulation of all the studied genes (p < 0.05). To sum, the results obtained advocate for the further exploitation of the antimicrobial action of oregano EO in food and health applications. MDPI 2023-07-29 /pmc/articles/PMC10418746/ /pubmed/37569162 http://dx.doi.org/10.3390/foods12152893 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kolypetri, Sonia Kostoglou, Dimitra Nikolaou, Anastasios Kourkoutas, Yiannis Giaouris, Efstathios Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes |
title | Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes |
title_full | Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes |
title_fullStr | Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes |
title_full_unstemmed | Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes |
title_short | Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella Typhimurium and Listeria monocytogenes |
title_sort | chemical composition, antibacterial and antibiofilm actions of oregano (origanum vulgare subsp. hirtum) essential oil against salmonella typhimurium and listeria monocytogenes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418746/ https://www.ncbi.nlm.nih.gov/pubmed/37569162 http://dx.doi.org/10.3390/foods12152893 |
work_keys_str_mv | AT kolypetrisonia chemicalcompositionantibacterialandantibiofilmactionsoforeganooriganumvulgaresubsphirtumessentialoilagainstsalmonellatyphimuriumandlisteriamonocytogenes AT kostogloudimitra chemicalcompositionantibacterialandantibiofilmactionsoforeganooriganumvulgaresubsphirtumessentialoilagainstsalmonellatyphimuriumandlisteriamonocytogenes AT nikolaouanastasios chemicalcompositionantibacterialandantibiofilmactionsoforeganooriganumvulgaresubsphirtumessentialoilagainstsalmonellatyphimuriumandlisteriamonocytogenes AT kourkoutasyiannis chemicalcompositionantibacterialandantibiofilmactionsoforeganooriganumvulgaresubsphirtumessentialoilagainstsalmonellatyphimuriumandlisteriamonocytogenes AT giaourisefstathios chemicalcompositionantibacterialandantibiofilmactionsoforeganooriganumvulgaresubsphirtumessentialoilagainstsalmonellatyphimuriumandlisteriamonocytogenes |