Cargando…

CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence

As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Wei, Chen, Zhi-Nan, Wang, Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418799/
https://www.ncbi.nlm.nih.gov/pubmed/37569693
http://dx.doi.org/10.3390/ijms241512317
Descripción
Sumario:As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid tumors. Even in hematologic malignancies, a proportion of patients eventually relapse after receiving CAR-T cell infusions, owing to the poor expansion and persistence of CAR-T cells. Recently, CRISPR/Cas9 technology has provided an effective approach to promoting the proliferation and persistence of CAR-T cells in the body. This technology has been utilized in CAR-T cells to generate a memory phenotype, reduce exhaustion, and screen new targets to improve the anti-tumor potential. In this review, we aim to describe the major causes limiting the persistence of CAR-T cells in patients and discuss the application of CRISPR/Cas9 in promoting CAR-T cell persistence and its anti-tumor function. Finally, we investigate clinical trials for CRISPR/Cas9-engineered CAR-T cells for the treatment of cancer.