Cargando…
Combined Metabolipidomic and Machine Learning Approach in a Rat Model of Stroke Reveals a Deleterious Impact of Brain Injury on Heart Metabolism
Cardiac complications are frequently found following a stroke in humans whose pathophysiological mechanism remains poorly understood. We used machine learning to analyse a large set of data from a metabolipidomic study assaying 630 metabolites in a rat stroke model to investigate metabolic changes a...
Autores principales: | Dieu, Xavier, Tamareille, Sophie, Herbreteau, Aglae, Lebeau, Lucie, Chao De La Barca, Juan Manuel, Chabrun, Floris, Reynier, Pascal, Mirebeau-Prunier, Delphine, Prunier, Fabrice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418865/ https://www.ncbi.nlm.nih.gov/pubmed/37569376 http://dx.doi.org/10.3390/ijms241512000 |
Ejemplares similares
-
Deep learning shows no morphological abnormalities in neutrophils in Alzheimer's disease
por: Chabrun, Floris, et al.
Publicado: (2021) -
Kynurenic Acid: A Novel Player in Cardioprotection against Myocardial Ischemia/Reperfusion Injuries
por: Kamel, Rima, et al.
Publicado: (2023) -
Modifications in Rat Plasma Proteome after Remote Ischemic Preconditioning (RIPC) Stimulus: Identification by a SELDI-TOF-MS Approach
por: Hibert, Pierre, et al.
Publicado: (2014) -
Metabolic Signature of Remote Ischemic Preconditioning Involving a Cocktail of Amino Acids and Biogenic Amines
por: Chao de la Barca, Juan Manuel, et al.
Publicado: (2016) -
Apolipoprotein A-I Is a Potential Mediator of Remote Ischemic Preconditioning
por: Hibert, Pierre, et al.
Publicado: (2013)