Cargando…
Classification of Color Fundus Photographs Using Fusion Extracted Features and Customized CNN Models
This study focuses on overcoming challenges in classifying eye diseases using color fundus photographs by leveraging deep learning techniques, aiming to enhance early detection and diagnosis accuracy. We utilized a dataset of 6392 color fundus photographs across eight disease categories, which was l...
Autores principales: | Wang, Jing-Zhe, Lu, Nan-Han, Du, Wei-Chang, Liu, Kuo-Ying, Hsu, Shih-Yen, Wang, Chi-Yuan, Chen, Yun-Ju, Chang, Li-Ching, Twan, Wen-Hung, Chen, Tai-Been, Huang, Yung-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418900/ https://www.ncbi.nlm.nih.gov/pubmed/37570467 http://dx.doi.org/10.3390/healthcare11152228 |
Ejemplares similares
-
Registration of OCT fundus images with color fundus photographs based on blood vessel ridges
por: Li, Ying, et al.
Publicado: (2010) -
A review on automatic analysis techniques for color fundus photographs
por: Besenczi, Renátó, et al.
Publicado: (2016) -
Artificial intelligence-based detection of epimacular membrane from color fundus photographs
por: Shao, Enhua, et al.
Publicado: (2021) -
Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?
por: Biswas, Sangeeta, et al.
Publicado: (2022) -
Semi‐supervised classification of fundus images combined with CNN and GCN
por: Duan, Sixu, et al.
Publicado: (2022)