Cargando…
Predicting Multimorbidity Using Saudi Health Indicators (Sharik) Nationwide Data: Statistical and Machine Learning Approach
The Saudi population is at high risk of multimorbidity. The risk of these morbidities can be reduced by identifying common modifiable behavioural risk factors. This study uses statistical and machine learning methods to predict factors for multimorbidity in the Saudi population. Data from 23,098 Sau...
Autores principales: | Albagmi, Faisal Mashel, Hussain, Mehwish, Kamal, Khurram, Sheikh, Muhammad Fahad, AlNujaidi, Heba Yaagoub, Bah, Sulaiman, Althumiri, Nora A., BinDhim, Nasser F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418949/ https://www.ncbi.nlm.nih.gov/pubmed/37570417 http://dx.doi.org/10.3390/healthcare11152176 |
Ejemplares similares
-
Anxiety Levels Amid the COVID-19 Lockdown in Saudi Arabia
por: Albagmi, Faisal Mashel, et al.
Publicado: (2021) -
The Knowledge and Determinants of Sexual Health and Sexual Transmitted Infections Among Women in Saudi Arabia: A Nationwide Survey
por: AlNujaidi, Heba Yaagoub, et al.
Publicado: (2023) -
Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach
por: Albagmi, Faisal Mashel, et al.
Publicado: (2022) -
Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020
por: BinDhim, Nasser F., et al.
Publicado: (2021) -
Exploring the Sociodemographic and Behavioral Status of People Living with Hypercholesterolemia in Saudi Arabia: A Nation-Wide Cross-Sectional Study
por: Almubark, Sarh A, et al.
Publicado: (2023)