Cargando…

SPARC Is Highly Expressed in Young Skin and Promotes Extracellular Matrix Integrity in Fibroblasts via the TGF-β Signaling Pathway

The matricellular secreted protein acidic and rich in cysteine (SPARC; also known as osteonectin), is involved in the regulation of extracellular matrix (ECM) synthesis, cell-ECM interactions, and bone mineralization. We found decreased SPARC expression in aged skin. Incubating foreskin fibroblasts...

Descripción completa

Detalles Bibliográficos
Autores principales: Ham, Seung Min, Song, Min Ji, Yoon, Hyun-Sun, Lee, Dong Hun, Chung, Jin Ho, Lee, Seung-Taek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419001/
https://www.ncbi.nlm.nih.gov/pubmed/37569556
http://dx.doi.org/10.3390/ijms241512179
Descripción
Sumario:The matricellular secreted protein acidic and rich in cysteine (SPARC; also known as osteonectin), is involved in the regulation of extracellular matrix (ECM) synthesis, cell-ECM interactions, and bone mineralization. We found decreased SPARC expression in aged skin. Incubating foreskin fibroblasts with recombinant human SPARC led to increased type I collagen production and decreased matrix metalloproteinase-1 (MMP-1) secretion at the protein and mRNA levels. In a three-dimensional culture of foreskin fibroblasts mimicking the dermis, SPARC significantly increased the synthesis of type I collagen and decreased its degradation. In addition, SPARC also induced receptor-regulated SMAD (R-SMAD) phosphorylation. An inhibitor of transforming growth factor-beta (TGF-β) receptor type 1 reversed the SPARC-induced increase in type I collagen and decrease in MMP-1, and decreased SPARC-induced R-SMAD phosphorylation. Transcriptome analysis revealed that SPARC modulated expression of genes involved in ECM synthesis and regulation in fibroblasts. RT-qPCR confirmed that a subset of differentially expressed genes is induced by SPARC. These results indicated that SPARC enhanced ECM integrity by activating the TGF-β signaling pathway in fibroblasts. We inferred that the decline in SPARC expression in aged skin contributes to process of skin aging by negatively affecting ECM integrity in fibroblasts.