Cargando…

From Reductionistic Approach to Systems Immunology Approach for the Understanding of Tumor Microenvironment

The tumor microenvironment (TME) is a complex and dynamic ecosystem that includes a variety of immune cells mutually interacting with tumor cells, structural/stromal cells, and each other. The immune cells in the TME can have dual functions as pro-tumorigenic and anti-tumorigenic. To understand such...

Descripción completa

Detalles Bibliográficos
Autores principales: Koelsch, Nicholas, Manjili, Masoud H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419122/
https://www.ncbi.nlm.nih.gov/pubmed/37569461
http://dx.doi.org/10.3390/ijms241512086
Descripción
Sumario:The tumor microenvironment (TME) is a complex and dynamic ecosystem that includes a variety of immune cells mutually interacting with tumor cells, structural/stromal cells, and each other. The immune cells in the TME can have dual functions as pro-tumorigenic and anti-tumorigenic. To understand such paradoxical functions, the reductionistic approach classifies the immune cells into pro- and anti-tumor cells and suggests the therapeutic blockade of the pro-tumor and induction of the anti-tumor immune cells. This strategy has proven to be partially effective in prolonging patients’ survival only in a fraction of patients without offering a cancer cure. Recent advances in multi-omics allow taking systems immunology approach. This essay discusses how a systems immunology approach could revolutionize our understanding of the TME by suggesting that internetwork interactions of the immune cell types create distinct collective functions independent of the function of each cellular constituent. Such collective function can be understood by the discovery of the immunological patterns in the TME and may be modulated as a therapeutic means for immunotherapy of cancer.