Cargando…
Machine learning-based integration develops a neutrophil-derived signature for improving outcomes in hepatocellular carcinoma
INTRODUCTION: The heterogeneity of tumor immune microenvironments is a major factor in poor prognosis among hepatocellular carcinoma (HCC) patients. Neutrophils have been identified as playing a critical role in the immune microenvironment of HCC based on recent single-cell studies. However, there i...
Autores principales: | Gong, Qiming, Chen, Xiaodan, Liu, Fahui, Cao, Yuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419218/ https://www.ncbi.nlm.nih.gov/pubmed/37575244 http://dx.doi.org/10.3389/fimmu.2023.1216585 |
Ejemplares similares
-
Integrating scRNA and bulk-RNA sequencing develops a cell senescence signature for analyzing tumor heterogeneity in clear cell renal cell carcinoma
por: Gong, Qiming, et al.
Publicado: (2023) -
Integrative pan-cancer landscape of MMS22L and its potential role in hepatocellular carcinoma
por: Guo, Zhiting, et al.
Publicado: (2022) -
Identification of Ligand-Receptor Pairs Associated With Tumour Characteristics in Clear Cell Renal Cell Carcinoma
por: Liu, Fahui, et al.
Publicado: (2022) -
Unveiling efferocytosis-related signatures through the integration of single-cell analysis and machine learning: a predictive framework for prognosis and immunotherapy response in hepatocellular carcinoma
por: Liu, Tao, et al.
Publicado: (2023) -
Noninvasive evaluation of neutrophil extracellular traps signature predicts clinical outcomes and immunotherapy response in hepatocellular carcinoma
por: Xin, Hongjie, et al.
Publicado: (2023)