Cargando…
Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography
PURPOSE: Low-dose computed tomography (LDCT) for lung cancer screening is effective, although most eligible people are not being screened. Tools that provide personalized future cancer risk assessment could focus approaches toward those most likely to benefit. We hypothesized that a deep learning mo...
Autores principales: | Mikhael, Peter G., Wohlwend, Jeremy, Yala, Adam, Karstens, Ludvig, Xiang, Justin, Takigami, Angelo K., Bourgouin, Patrick P., Chan, PuiYee, Mrah, Sofiane, Amayri, Wael, Juan, Yu-Hsiang, Yang, Cheng-Ta, Wan, Yung-Liang, Lin, Gigin, Sequist, Lecia V., Fintelmann, Florian J., Barzilay, Regina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419602/ https://www.ncbi.nlm.nih.gov/pubmed/36634294 http://dx.doi.org/10.1200/JCO.22.01345 |
Ejemplares similares
-
Sybil : or, The two nations /
por: Disraeli, Benjamin, Earl of Beaconsfield, 1804-1881
Publicado: (1980) -
Role of sex in lung cancer risk prediction based on single low-dose chest computed tomography
por: Simon, Judit, et al.
Publicado: (2023) -
sybil – Efficient constraint-based modelling in R
por: Gelius-Dietrich, Gabriel, et al.
Publicado: (2013) -
Using Sybil for interactive comparative genomics of microbes on the web
por: Riley, David R., et al.
Publicado: (2012) -
Secure Vehicular Platoon Management against Sybil Attacks
por: Junaidi, Danial Ritzuan, et al.
Publicado: (2022)