Cargando…
Assessment of Optimizers and their Performance in Autosegmenting Lung Tumors
PURPOSE: Optimizers are widely utilized across various domains to enhance desired outcomes by either maximizing or minimizing objective functions. In the context of deep learning, they help to minimize the loss function and improve model’s performance. This study aims to evaluate the accuracy of dif...
Autores principales: | Ramachandran, Prabhakar, Eswarlal, Tamma, Lehman, Margot, Colbert, Zachery |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419743/ https://www.ncbi.nlm.nih.gov/pubmed/37576091 http://dx.doi.org/10.4103/jmp.jmp_54_23 |
Ejemplares similares
-
Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline
por: Wang, Jiahui, et al.
Publicado: (2014) -
Automatic Detection and Tracking of Marker Seeds Implanted in Prostate Cancer Patients using a Deep Learning Algorithm
por: Amarsee, Keya, et al.
Publicado: (2021) -
Investigation of Computed Tomography Numbers on Multiple Imaging Systems using Single and Multislice Methods
por: Mehta, Akash, et al.
Publicado: (2023) -
Quantification of Lung Tumor Motion and Optimization of Treatment
por: Savanović, Milovan, et al.
Publicado: (2023) -
Dose volume uniformity index: a simple tool for treatment plan evaluation in brachytherapy
por: Prabhakar, Ramachandran
Publicado: (2010)