Cargando…

Boundary Aware Semantic Segmentation using Pyramid-dilated Dense U-Net for Lung Segmentation in Computed Tomography Images

AIM: The main objective of this work is to propose an efficient segmentation model for accurate and robust lung segmentation from computed tomography (CT) images, even when the lung contains abnormalities such as juxtapleural nodules, cavities, and consolidation. METHODOLOGY: A novel deep learning-b...

Descripción completa

Detalles Bibliográficos
Autor principal: Agnes, S. Akila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419745/
https://www.ncbi.nlm.nih.gov/pubmed/37576094
http://dx.doi.org/10.4103/jmp.jmp_1_23
Descripción
Sumario:AIM: The main objective of this work is to propose an efficient segmentation model for accurate and robust lung segmentation from computed tomography (CT) images, even when the lung contains abnormalities such as juxtapleural nodules, cavities, and consolidation. METHODOLOGY: A novel deep learning-based segmentation model, pyramid-dilated dense U-Net (PDD-U-Net), is proposed to directly segment lung regions from the whole CT image. The model is integrated with pyramid-dilated convolution blocks to capture and preserve multi-resolution spatial features effectively. In addition, shallow and deeper stream features are embedded in the nested U-Net structure at the decoder side to enhance the segmented output. The effect of three loss functions is investigated in this paper, as the medical image analysis method requires precise boundaries. The proposed PDD-U-Net model with shape-aware loss function is tested on the lung CT segmentation challenge (LCTSC) dataset with standard lung CT images and the lung image database consortium-image database resource initiative (LIDC-IDRI) dataset containing both typical and pathological lung CT images. RESULTS: The performance of the proposed method is evaluated using Intersection over Union, dice coefficient, precision, recall, and average Hausdorff distance metrics. Segmentation results showed that the proposed PDD-U-Net model outperformed other segmentation methods and achieved a 0.983 dice coefficient for the LIDC-IDRI dataset and a 0.994 dice coefficient for the LCTSC dataset. CONCLUSIONS: The proposed PDD-U-Net model with shape-aware loss function is an effective and accurate method for lung segmentation from CT images, even in the presence of abnormalities such as cavities, consolidation, and nodules. The model’s integration of pyramid-dilated convolution blocks and nested U-Net structure at the decoder side, along with shape-aware loss function, contributed to its high segmentation accuracy. This method could have significant implications for the computer-aided diagnosis system, allowing for quick and accurate analysis of lung regions.