Cargando…
Boundary Aware Semantic Segmentation using Pyramid-dilated Dense U-Net for Lung Segmentation in Computed Tomography Images
AIM: The main objective of this work is to propose an efficient segmentation model for accurate and robust lung segmentation from computed tomography (CT) images, even when the lung contains abnormalities such as juxtapleural nodules, cavities, and consolidation. METHODOLOGY: A novel deep learning-b...
Autor principal: | Agnes, S. Akila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419745/ https://www.ncbi.nlm.nih.gov/pubmed/37576094 http://dx.doi.org/10.4103/jmp.jmp_1_23 |
Ejemplares similares
-
An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation
por: Wang, Wei, et al.
Publicado: (2021) -
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
por: Zhu, Hancan, et al.
Publicado: (2019) -
Feature Pyramid U-Net with Attention for Semantic Segmentation of Forward-Looking Sonar Images
por: Zhao, Dongdong, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)