Cargando…
The Influence of Alumina Airborne-Particle Abrasion with Various Sizes of Alumina Particles on the Phase Transformation and Fracture Resistance of Zirconia-Based Dental Ceramics
The surface of zirconia-based dental ceramic restorations require preparation prior to adhesive cementation. The purpose of this study was to assess the influence of airborne-particle abrasion with different sizes of alumina particles (50 μm, 110 μm, or 250 μm) on the mechanical strength of zirconia...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419888/ https://www.ncbi.nlm.nih.gov/pubmed/37570123 http://dx.doi.org/10.3390/ma16155419 |
Sumario: | The surface of zirconia-based dental ceramic restorations require preparation prior to adhesive cementation. The purpose of this study was to assess the influence of airborne-particle abrasion with different sizes of alumina particles (50 μm, 110 μm, or 250 μm) on the mechanical strength of zirconia-based ceramics’ frameworks and on the extent of phase transformations. A fracture resistance test was performed. The central surface of the frameworks was subjected to a load [N]. The identification and quantitative determination of the crystalline phase present in the zirconia specimens was assessed using X-ray diffraction. The Kruskal–Wallis one-way analysis of variance was used to establish significance (α = 0.05). The fracture resistance of zirconia-based frameworks significantly increases with an increase in the size of alumina particles used for air abrasion: 715.5 N for 250 μm alumina particles, 661.1 N for 110 μm, 608.7 N for 50 μm and the lowest for the untreated specimens (364.2 N). The X-ray diffraction analysis showed an increase in the monoclinic phase content after air abrasion: 50 μm alumina particles—26%, 110 μm—40%, 250 μm—56%, and no treatment—none. Air abrasion of the zirconia-based dental ceramics’ surface with alumina particles increases the fracture resistance of zirconia copings and the monoclinic phase volume. This increase is strongly related to the alumina particle size. |
---|