Cargando…
Analysis of the Frictional Performance of AW-5251 Aluminium Alloy Sheets Using the Random Forest Machine Learning Algorithm and Multilayer Perceptron
This paper is devoted to the determination of the coefficient of friction (COF) in the drawbead region in metal forming processes. As the test material, AW-5251 aluminium alloys sheets fabricated under various hardening conditions (AW-5251-O, AW-5251-H14, AW-5251-H16 and AW-5251H22) were used. The s...
Autores principales: | Trzepieciński, Tomasz, Najm, Sherwan Mohammed, Ibrahim, Omar Maghawry, Kowalik, Marek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420024/ https://www.ncbi.nlm.nih.gov/pubmed/37569911 http://dx.doi.org/10.3390/ma16155207 |
Ejemplares similares
-
Application of Artificial Neural Networks to the Analysis of Friction Behaviour in a Drawbead Profile in Sheet Metal Forming
por: Trzepieciński, Tomasz, et al.
Publicado: (2022) -
Parametric Effects of Single Point Incremental Forming on Hardness of AA1100 Aluminium Alloy Sheets
por: Najm, Sherwan Mohammed, et al.
Publicado: (2021) -
Multi-Criteria Optimisation of Friction Stir Welding Parameters for EN AW-2024-T3 Aluminium Alloy Joints
por: Kubit, Andrzej, et al.
Publicado: (2022) -
Friction Behaviour of 6082-T6 Aluminium Alloy Sheets in a Strip Draw Tribological Test
por: Trzepieciński, Tomasz, et al.
Publicado: (2023) -
Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm
por: Trzepieciński, Tomasz, et al.
Publicado: (2020)