Cargando…

Characteristic Parameters of Magnetostrictive Guided Wave Testing for Fatigue Damage of Steel Strands

Steel strands are widely used in structures such as bridge cables, and their integrity is critical to keeping these structures safe. A steel strand is under the working condition of an alternating load for a long time, and fatigue damage is unavoidable. It is necessary to find characteristic paramet...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaohui, Xu, Jiang, Li, Yong, Wang, Shenghuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420041/
https://www.ncbi.nlm.nih.gov/pubmed/37569919
http://dx.doi.org/10.3390/ma16155215
Descripción
Sumario:Steel strands are widely used in structures such as bridge cables, and their integrity is critical to keeping these structures safe. A steel strand is under the working condition of an alternating load for a long time, and fatigue damage is unavoidable. It is necessary to find characteristic parameters for evaluating fatigue damage. In this study, nonlinear coefficients and attenuation coefficients were employed to evaluate fatigue damage based on magnetostrictive guided wave testing. Unlike pipe and steel wire structures, there is a phenomenon of a notch frequency when guided waves propagate in steel strands. The influence of the notch frequency on the nonlinear coefficient and attenuation coefficient is discussed. The relationship between the nonlinear coefficient, attenuation coefficient, and cyclic loading times was obtained through experiments. The amplitudes of the nonlinear coefficient and attenuation coefficient both increased with the increase in cyclic loading times. The experiments also showed the effectiveness of using these two characteristic parameters to evaluate fatigue damage.