Cargando…

Recent Advances in the Synthesis and Application of Vacancy-Ordered Halide Double Perovskite Materials for Solar Cells: A Promising Alternative to Lead-Based Perovskites

Lead-based halide perovskite materials are being developed as efficient light-absorbing materials for use in perovskite solar cells (PSCs). PSCs have shown remarkable progress in power conversion efficiency, increasing from 3.80% to more than 25% within a decade, showcasing their potential as a prom...

Descripción completa

Detalles Bibliográficos
Autores principales: Murugan, Santhosh, Lee, Eun-Cheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420113/
https://www.ncbi.nlm.nih.gov/pubmed/37569980
http://dx.doi.org/10.3390/ma16155275
Descripción
Sumario:Lead-based halide perovskite materials are being developed as efficient light-absorbing materials for use in perovskite solar cells (PSCs). PSCs have shown remarkable progress in power conversion efficiency, increasing from 3.80% to more than 25% within a decade, showcasing their potential as a promising renewable energy technology. Although PSCs have many benefits, including a high light absorption coefficient, the ability to tune band gap, and a long charge diffusion length, the poor stability and the toxicity of lead represent a significant disadvantage for commercialization. To address this issue, research has focused on developing stable and nontoxic halide perovskites for use in solar cells. A potential substitute is halide double perovskites (HDPs), particularly vacancy-ordered HDPs, as they offer greater promise because they can be processed using a solution-based method. This review provides a structural analysis of HDPs, the various synthesis methods for vacancy-ordered HDPs, and their impact on material properties. Recent advances in vacancy-ordered HDPs are also discussed, including their role in active and transport layers of solar cells. Furthermore, valuable insights for developing high-performance vacancy-ordered HDP solar cells are reported from the detailed information presented in recent simulation studies. Finally, the potential of vacancy-ordered HDPs as a substitute for lead-based perovskites is outlined. Overall, the ability to tune optical and electronic properties and the high stability and nontoxicity of HDPs have positioned them as a promising candidate for use in photovoltaic applications.