Cargando…
Enhancing the Electrochemical Stability of LiNi(0.8)Co(0.1)Mn(0.1)O(2) Compounds for Lithium-Ion Batteries via Tailoring Precursors Synthesis Temperatures
LiNi(0.8)Co(0.1)Mn(0.1)O(2) (LNCMO) cathode materials for lithium-ion batteries (LIBs) were prepared by the hydrothermal synthesis of precursors and high-temperature calcination. The effect of precursor hydrothermal synthesis temperature on the microstructures and electrochemical cycling performance...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420146/ https://www.ncbi.nlm.nih.gov/pubmed/37570101 http://dx.doi.org/10.3390/ma16155398 |
Sumario: | LiNi(0.8)Co(0.1)Mn(0.1)O(2) (LNCMO) cathode materials for lithium-ion batteries (LIBs) were prepared by the hydrothermal synthesis of precursors and high-temperature calcination. The effect of precursor hydrothermal synthesis temperature on the microstructures and electrochemical cycling performances of the Ni-rich LNCMO cathode materials were investigated by SEM, XRD, XPS and electrochemical tests. The results showed that the cathode material prepared using the precursor synthesized at a hydrothermal temperature of 220 °C exhibited the best charge/discharge cycle stability, whose specific capacity retention rate reached 81.94% after 50 cycles. Such enhanced cyclic stability of LNCMO was directly related to the small grain size, high crystallinity and structural stability inherited from the precursor obtained at 220 °C. |
---|