Cargando…
Experimental Study on the Effect of an Organic Matrix on Improving the Strength of Tailings Strengthened by MICP
In order to improve the effect of microbial-induced calcium carbonate precipitation (MICP) in tailings reinforcement, sodium citrate, an organic matrix with good water solubility, was selected as the crystal form adjustment template for inducing calcium carbonate crystallization, and the reinforceme...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420210/ https://www.ncbi.nlm.nih.gov/pubmed/37570041 http://dx.doi.org/10.3390/ma16155337 |
Sumario: | In order to improve the effect of microbial-induced calcium carbonate precipitation (MICP) in tailings reinforcement, sodium citrate, an organic matrix with good water solubility, was selected as the crystal form adjustment template for inducing calcium carbonate crystallization, and the reinforcements of tailings by MICP were conducted in several experiments. The effects of sodium citrate on the yield, crystal form, crystal appearance, and distribution of calcium carbonate were analyzed by MICP solution test; thus, the related results were obtained. These showed that the addition of a proper amount of organic matrix sodium citrate could result in an increment in the yield of calcium carbonate. The growth rate of calcium carbonate reached 22.6% under the optimum amount of sodium citrate, and the crystals of calcium carbonate were diverse and closely arranged. Based on this, the MICP reinforcement test of tailings was carried out under the action of the optimum amount of sodium citrate. The microscopic analysis using CT and other means showed that the calcium carbonate is distributed more uniformly in tailings, and the porosity of samples is significantly reduced by layered scanning analysis. The results of triaxial shear tests showed that adding organic matrix sodium citrate effectively increased the cohesion, internal friction angle, and peak stress of the reinforced tailings. It aims to provide a novel idea, a creative approach, and a method to enhance the reinforcement effect of tailings and green solidification technology in the mining environment. |
---|