Cargando…
Comparing molecular representations, e-nose signals, and other featurization, for learning to smell aroma molecules
Recent research has attempted to predict our perception of odorants using Machine Learning models. The featurization of the olfactory stimuli usually represents the odorants using molecular structure parameters, molecular fingerprints, mass spectra, or e-nose signals. However, the impact of the choi...
Autores principales: | Debnath, Tanoy, Badreddine, Samy, Kumari, Priyadarshini, Spranger, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420360/ https://www.ncbi.nlm.nih.gov/pubmed/37566580 http://dx.doi.org/10.1371/journal.pone.0289881 |
Ejemplares similares
-
On the nose: genetic and evolutionary aspects of smell
por: Jobling, Mark A
Publicado: (2015) -
Bioelectronic nose and its application to smell visualization
por: Ko, Hwi Jin, et al.
Publicado: (2016) -
Special Issue “Volatile Compounds and Smell Chemicals (Odor and Aroma) of Food”
por: Aprea, Eugenio
Publicado: (2020) -
Comparison of Cheese Aroma Intensity Measured Using an Electronic Nose (E-Nose) Non-Destructively with the Aroma Intensity Scores of a Sensory Evaluation: A Pilot Study
por: Fujioka, Kouki
Publicado: (2021) -
Extraction of sensing data for desired scent impressions using mass spectra of odorant molecules
por: Debnath, Tanoy, et al.
Publicado: (2022)