Cargando…

Detecting the Minimum Limit on Wheat Stripe Rust in the Latent Period Using Proximal Remote Sensing Coupled with Duplex Real-Time PCR and Machine Learning

Wheat stripe rust (WSR) is an airborne disease that causes severe damage to wheat. The rapid and early detection of WSR is essential for the prevention and control of this disease. The minimum detection limit (MDL) is one of the most important characteristics of quantitative methods that can be used...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qi, Sun, Tingting, Wen, Xiaojie, Zeng, Minghao, Chen, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420842/
https://www.ncbi.nlm.nih.gov/pubmed/37570968
http://dx.doi.org/10.3390/plants12152814
Descripción
Sumario:Wheat stripe rust (WSR) is an airborne disease that causes severe damage to wheat. The rapid and early detection of WSR is essential for the prevention and control of this disease. The minimum detection limit (MDL) is one of the most important characteristics of quantitative methods that can be used to determine the scope and applicability of a measurement technique. Three wheat cultivars were inoculated with Puccinia striiformis f.sp. tritici (Pst), and a spectrometer was used to collect the canopy hyperspectral data, and the Pst content was obtained via a duplex real-time polymerase chain reaction (PCR) during the latent period, respectively. The disease index (DI) and molecular disease index (MDI) were calculated. The regression tree algorithm was used to determine the MDL of the Pst based on hyperspectral feature parameters. The logistic, IBK, and random committee algorithms were used to construct the classification model based on the MDL. The results showed that when the MDL was 0.7, IBK had the best recognition accuracy. The optimal model, which used the spectral feature R_2nd.dv ((the second derivative of the original hyperspectral value)) and the modeling ratio 2:1, had an accuracy of 91.67% on the testing set and 90.67% on the 10-fold cross-validation. Thus, during the latent period, the MDL of Pst was determined using hyperspectral technology as 0.7.