Cargando…
Composite Interlaminar Fracture Toughness Enhancement Using Electrospun PPO Fiber Veils Regulated by Functionalized CNTs
In this study, carbon nanotubes (CNTs) are functionalized through diazonium salt reaction to introduce polar groups onto their surfaces. These functionalized CNTs (FCNTs) are added into PPO solutions at different loadings (0 wt%, 0.5 wt%, 1 wt%, 1.5 wt%) and used for electrospinning. The results sho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420893/ https://www.ncbi.nlm.nih.gov/pubmed/37571047 http://dx.doi.org/10.3390/polym15153152 |
Sumario: | In this study, carbon nanotubes (CNTs) are functionalized through diazonium salt reaction to introduce polar groups onto their surfaces. These functionalized CNTs (FCNTs) are added into PPO solutions at different loadings (0 wt%, 0.5 wt%, 1 wt%, 1.5 wt%) and used for electrospinning. The results show that the addition of FCNTs facilitate the production of PPO veils having small fiber diameters. The veils are used as interleaves in CF/EP composite laminates. The Mode I and Mode II interlaminar fracture toughness tests reveal that PPO veils containing 0.5 wt% FCNTs exhibit the optimal toughening. G(IC)(ini) and G(IIC) have an improvement of approximately 120% and 180% over the untoughened samples, respectively, which is 15% and 26% higher than that of PPO veils containing no CNTs, respectively. The toughening mechanism is also analyzed using scanning electron microscopy (SEM). |
---|