Cargando…

Flow Boiling Heat Transfer; Experimental Study of Hydrocarbon Based Nanorefrigerant in a Vertical Tube

Flow boiling is a complex process but very efficient for thermal management in different sectors; enhancing flow boiling heat transfer properties is a research field of great interest. This study proposes the use of various nanomaterials, carbon-based materials, and metal oxides; in n-pentane as a h...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernaiz, Marta, Elexpe, Iker, Aranzabe, Estibaliz, Aguayo, Andrés T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420909/
https://www.ncbi.nlm.nih.gov/pubmed/37570548
http://dx.doi.org/10.3390/nano13152230
Descripción
Sumario:Flow boiling is a complex process but very efficient for thermal management in different sectors; enhancing flow boiling heat transfer properties is a research field of great interest. This study proposes the use of various nanomaterials, carbon-based materials, and metal oxides; in n-pentane as a hydrocarbon-based refrigerant to enhance the flow boiling heat transfer coefficient. This thermal property has been experimentally evaluated using a vertical evaporation device of glass with an internal diameter of 20 mm. The results have shown that proposed nanomaterials dispersion in n-pentane has a limited effect on the thermophysical properties and is conditioned by their dispersibility but promotes a significant increment of pentane heat transfer coefficient (h), increasing the overall heat transfer coefficient (U) of the evaporator. The enhanced heat transfer performance is attributed to the behavior of nanoparticles under working conditions and their interaction with the working surface, promoting a higher generation of nucleation sites. The observed behavior suggests a heat transfer mechanism transition from forced convection to nucleate heat transfer, supported by visual observations.