Cargando…

Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition

Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial...

Descripción completa

Detalles Bibliográficos
Autores principales: Ujlaki, Gyula, Kovács, Tünde, Vida, András, Kókai, Endre, Rauch, Boglára, Schwarcz, Szandra, Mikó, Edit, Janka, Eszter, Sipos, Adrienn, Hegedűs, Csaba, Uray, Karen, Nagy, Péter, Bai, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420980/
https://www.ncbi.nlm.nih.gov/pubmed/37570868
http://dx.doi.org/10.3390/molecules28155898
_version_ 1785088851508723712
author Ujlaki, Gyula
Kovács, Tünde
Vida, András
Kókai, Endre
Rauch, Boglára
Schwarcz, Szandra
Mikó, Edit
Janka, Eszter
Sipos, Adrienn
Hegedűs, Csaba
Uray, Karen
Nagy, Péter
Bai, Peter
author_facet Ujlaki, Gyula
Kovács, Tünde
Vida, András
Kókai, Endre
Rauch, Boglára
Schwarcz, Szandra
Mikó, Edit
Janka, Eszter
Sipos, Adrienn
Hegedűs, Csaba
Uray, Karen
Nagy, Péter
Bai, Peter
author_sort Ujlaki, Gyula
collection PubMed
description Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol—d-mannose, 1-butanol—butyric acid, ethylene glycol—glycolic acid—oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties.
format Online
Article
Text
id pubmed-10420980
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104209802023-08-12 Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition Ujlaki, Gyula Kovács, Tünde Vida, András Kókai, Endre Rauch, Boglára Schwarcz, Szandra Mikó, Edit Janka, Eszter Sipos, Adrienn Hegedűs, Csaba Uray, Karen Nagy, Péter Bai, Peter Molecules Article Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol—d-mannose, 1-butanol—butyric acid, ethylene glycol—glycolic acid—oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties. MDPI 2023-08-05 /pmc/articles/PMC10420980/ /pubmed/37570868 http://dx.doi.org/10.3390/molecules28155898 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ujlaki, Gyula
Kovács, Tünde
Vida, András
Kókai, Endre
Rauch, Boglára
Schwarcz, Szandra
Mikó, Edit
Janka, Eszter
Sipos, Adrienn
Hegedűs, Csaba
Uray, Karen
Nagy, Péter
Bai, Peter
Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
title Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
title_full Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
title_fullStr Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
title_full_unstemmed Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
title_short Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
title_sort identification of bacterial metabolites modulating breast cancer cell proliferation and epithelial-mesenchymal transition
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420980/
https://www.ncbi.nlm.nih.gov/pubmed/37570868
http://dx.doi.org/10.3390/molecules28155898
work_keys_str_mv AT ujlakigyula identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT kovacstunde identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT vidaandras identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT kokaiendre identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT rauchboglara identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT schwarczszandra identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT mikoedit identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT jankaeszter identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT siposadrienn identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT hegeduscsaba identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT uraykaren identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT nagypeter identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition
AT baipeter identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition