Cargando…
Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition
Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420980/ https://www.ncbi.nlm.nih.gov/pubmed/37570868 http://dx.doi.org/10.3390/molecules28155898 |
_version_ | 1785088851508723712 |
---|---|
author | Ujlaki, Gyula Kovács, Tünde Vida, András Kókai, Endre Rauch, Boglára Schwarcz, Szandra Mikó, Edit Janka, Eszter Sipos, Adrienn Hegedűs, Csaba Uray, Karen Nagy, Péter Bai, Peter |
author_facet | Ujlaki, Gyula Kovács, Tünde Vida, András Kókai, Endre Rauch, Boglára Schwarcz, Szandra Mikó, Edit Janka, Eszter Sipos, Adrienn Hegedűs, Csaba Uray, Karen Nagy, Péter Bai, Peter |
author_sort | Ujlaki, Gyula |
collection | PubMed |
description | Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol—d-mannose, 1-butanol—butyric acid, ethylene glycol—glycolic acid—oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties. |
format | Online Article Text |
id | pubmed-10420980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104209802023-08-12 Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition Ujlaki, Gyula Kovács, Tünde Vida, András Kókai, Endre Rauch, Boglára Schwarcz, Szandra Mikó, Edit Janka, Eszter Sipos, Adrienn Hegedűs, Csaba Uray, Karen Nagy, Péter Bai, Peter Molecules Article Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol—d-mannose, 1-butanol—butyric acid, ethylene glycol—glycolic acid—oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties. MDPI 2023-08-05 /pmc/articles/PMC10420980/ /pubmed/37570868 http://dx.doi.org/10.3390/molecules28155898 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ujlaki, Gyula Kovács, Tünde Vida, András Kókai, Endre Rauch, Boglára Schwarcz, Szandra Mikó, Edit Janka, Eszter Sipos, Adrienn Hegedűs, Csaba Uray, Karen Nagy, Péter Bai, Peter Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition |
title | Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition |
title_full | Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition |
title_fullStr | Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition |
title_full_unstemmed | Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition |
title_short | Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition |
title_sort | identification of bacterial metabolites modulating breast cancer cell proliferation and epithelial-mesenchymal transition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420980/ https://www.ncbi.nlm.nih.gov/pubmed/37570868 http://dx.doi.org/10.3390/molecules28155898 |
work_keys_str_mv | AT ujlakigyula identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT kovacstunde identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT vidaandras identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT kokaiendre identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT rauchboglara identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT schwarczszandra identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT mikoedit identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT jankaeszter identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT siposadrienn identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT hegeduscsaba identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT uraykaren identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT nagypeter identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition AT baipeter identificationofbacterialmetabolitesmodulatingbreastcancercellproliferationandepithelialmesenchymaltransition |