Cargando…
Optimal Roving Winding on Toroidal Parts of Composite Frames
Frames made of polymer composites are increasingly used in the aerospace, automotive, and agricultural industries. A frequently used technology in the production line of composite frames is winding rovings onto a non-load-bearing frame to form the structure using an industrial robot and a winding he...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421064/ https://www.ncbi.nlm.nih.gov/pubmed/37571121 http://dx.doi.org/10.3390/polym15153227 |
_version_ | 1785088873686106112 |
---|---|
author | Mlýnek, Jaroslav Rahimian Koloor, Seyed Saeid Knobloch, Roman |
author_facet | Mlýnek, Jaroslav Rahimian Koloor, Seyed Saeid Knobloch, Roman |
author_sort | Mlýnek, Jaroslav |
collection | PubMed |
description | Frames made of polymer composites are increasingly used in the aerospace, automotive, and agricultural industries. A frequently used technology in the production line of composite frames is winding rovings onto a non-load-bearing frame to form the structure using an industrial robot and a winding head, which is solidified through a subsequent heat-treatment pressure process. In this technology, the most difficult procedure is the winding of the curved parts of a composite frame. The primary concern is to ensure the proper winding angles, minimize the gaps and overlaps, and ensure the homogeneity of the wound layers. In practice, the curved frame parts very often geometrically form sections of a torus. In this work, the difficulty of achieving a uniform winding of toroidal parts is described and quantified. It is shown that attaining the required winding quality depends significantly on the geometrical parameters of the torus in question. A mathematical model with a detailed procedure describing how to determine the number of rovings of a given width on toroidal parts is presented. The results of this work are illustrated with practical examples of today’s industrial problems. |
format | Online Article Text |
id | pubmed-10421064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104210642023-08-12 Optimal Roving Winding on Toroidal Parts of Composite Frames Mlýnek, Jaroslav Rahimian Koloor, Seyed Saeid Knobloch, Roman Polymers (Basel) Article Frames made of polymer composites are increasingly used in the aerospace, automotive, and agricultural industries. A frequently used technology in the production line of composite frames is winding rovings onto a non-load-bearing frame to form the structure using an industrial robot and a winding head, which is solidified through a subsequent heat-treatment pressure process. In this technology, the most difficult procedure is the winding of the curved parts of a composite frame. The primary concern is to ensure the proper winding angles, minimize the gaps and overlaps, and ensure the homogeneity of the wound layers. In practice, the curved frame parts very often geometrically form sections of a torus. In this work, the difficulty of achieving a uniform winding of toroidal parts is described and quantified. It is shown that attaining the required winding quality depends significantly on the geometrical parameters of the torus in question. A mathematical model with a detailed procedure describing how to determine the number of rovings of a given width on toroidal parts is presented. The results of this work are illustrated with practical examples of today’s industrial problems. MDPI 2023-07-28 /pmc/articles/PMC10421064/ /pubmed/37571121 http://dx.doi.org/10.3390/polym15153227 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mlýnek, Jaroslav Rahimian Koloor, Seyed Saeid Knobloch, Roman Optimal Roving Winding on Toroidal Parts of Composite Frames |
title | Optimal Roving Winding on Toroidal Parts of Composite Frames |
title_full | Optimal Roving Winding on Toroidal Parts of Composite Frames |
title_fullStr | Optimal Roving Winding on Toroidal Parts of Composite Frames |
title_full_unstemmed | Optimal Roving Winding on Toroidal Parts of Composite Frames |
title_short | Optimal Roving Winding on Toroidal Parts of Composite Frames |
title_sort | optimal roving winding on toroidal parts of composite frames |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421064/ https://www.ncbi.nlm.nih.gov/pubmed/37571121 http://dx.doi.org/10.3390/polym15153227 |
work_keys_str_mv | AT mlynekjaroslav optimalrovingwindingontoroidalpartsofcompositeframes AT rahimiankoloorseyedsaeid optimalrovingwindingontoroidalpartsofcompositeframes AT knoblochroman optimalrovingwindingontoroidalpartsofcompositeframes |