Cargando…
GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis)
Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribut...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421110/ https://www.ncbi.nlm.nih.gov/pubmed/37570996 http://dx.doi.org/10.3390/plants12152842 |
_version_ | 1785088885974368256 |
---|---|
author | Bai, Yucong Xie, Yali Cai, Miaomiao Jiang, Jutang Wu, Chongyang Zheng, Huifang Gao, Jian |
author_facet | Bai, Yucong Xie, Yali Cai, Miaomiao Jiang, Jutang Wu, Chongyang Zheng, Huifang Gao, Jian |
author_sort | Bai, Yucong |
collection | PubMed |
description | Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo. |
format | Online Article Text |
id | pubmed-10421110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104211102023-08-12 GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) Bai, Yucong Xie, Yali Cai, Miaomiao Jiang, Jutang Wu, Chongyang Zheng, Huifang Gao, Jian Plants (Basel) Article Moso bamboo (Phyllostachys edulis) is one of the fastest growing plants. Gibberellin (GA) is a key phytohormone regulating growth, but there are few studies on the growth of Moso bamboo regulated by GA. The gibberellin 20 oxidase (GA20ox) gene family was targeted in this study. Chromosomal distribution and collinearity analysis identified 10 GA20ox genes evenly distributed on chromosomes, and the family genes were relatively conservative in evolution. The genetic relationship of GA20ox genes had been confirmed to be closest in different genera of plants in a phylogenetic and selective pressure analysis between Moso bamboo and rice. About 1/3 GA20ox genes experienced positive selective pressure with segmental duplication being the main driver of gene family expansion. Analysis of expression patterns revealed that only six PheGA20ox genes were expressed in different organs of shoot development and flowers, that there was redundancy in gene function. Underground organs were not the main site of GA synthesis in Moso bamboo, and floral organs are involved in the GA biosynthesis process. The auxin signaling factor PheARF47 was located upstream of PheGA20ox3 and PheGA20ox6 genes, where PheARF47 regulated PheGA20ox3 through cis-P box elements and cis-AuxRR elements, based on the result that promoter analysis combined with yeast one-hybrid and dual luciferase detection analysis identified. Overall, we identified the evolutionary pattern of PheGA20ox genes in Moso bamboo and the possible major synthesis sites of GA, screened for key genes in the crosstalk between auxin and GA, and laid the foundation for further exploration of the synergistic regulation of growth by GA and auxin in Moso bamboo. MDPI 2023-08-01 /pmc/articles/PMC10421110/ /pubmed/37570996 http://dx.doi.org/10.3390/plants12152842 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bai, Yucong Xie, Yali Cai, Miaomiao Jiang, Jutang Wu, Chongyang Zheng, Huifang Gao, Jian GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) |
title | GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) |
title_full | GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) |
title_fullStr | GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) |
title_full_unstemmed | GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) |
title_short | GA20ox Family Genes Mediate Gibberellin and Auxin Crosstalk in Moso bamboo (Phyllostachys edulis) |
title_sort | ga20ox family genes mediate gibberellin and auxin crosstalk in moso bamboo (phyllostachys edulis) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421110/ https://www.ncbi.nlm.nih.gov/pubmed/37570996 http://dx.doi.org/10.3390/plants12152842 |
work_keys_str_mv | AT baiyucong ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis AT xieyali ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis AT caimiaomiao ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis AT jiangjutang ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis AT wuchongyang ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis AT zhenghuifang ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis AT gaojian ga20oxfamilygenesmediategibberellinandauxincrosstalkinmosobamboophyllostachysedulis |