Cargando…

The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile

CeO(2)-TiO(2) is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO(2) nanostructures decorated with CeO(2) nanoparticles at the surface. As the precursor, we used H(2)Ti(3)O(7) nanorib...

Descripción completa

Detalles Bibliográficos
Autores principales: Umek, Polona, Dürrschnabel, Michael, Molina-Luna, Leopoldo, Škapin, Srečo, Korošec, Romana Cerc, Bittencourt, Carla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421187/
https://www.ncbi.nlm.nih.gov/pubmed/37570808
http://dx.doi.org/10.3390/molecules28155838
_version_ 1785088910039187456
author Umek, Polona
Dürrschnabel, Michael
Molina-Luna, Leopoldo
Škapin, Srečo
Korošec, Romana Cerc
Bittencourt, Carla
author_facet Umek, Polona
Dürrschnabel, Michael
Molina-Luna, Leopoldo
Škapin, Srečo
Korošec, Romana Cerc
Bittencourt, Carla
author_sort Umek, Polona
collection PubMed
description CeO(2)-TiO(2) is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO(2) nanostructures decorated with CeO(2) nanoparticles at the surface. As the precursor, we used H(2)Ti(3)O(7) nanoribbons prepared from sodium titanate nanoribbons by ion exchange. Two cerium sources with an oxidation state of +3 and +4 were used to obtain mixed oxides. HAADF–STEM mapping of the Ce(4+)-modified nanoribbons revealed a thin continuous layer at the surface of the H(2)Ti(3)O(7) nanoribbons, while Ce(3+) cerium ions intercalated partially between the titanate layers. The phase composition and morphology changes were monitored during calcination between 620 °C and 960 °C. Thermal treatment led to the formation of CeO(2) nanoparticles on the surface of the TiO(2) nanoribbons, whose size increased with the calcination temperature. The use of Ce(4+) raised the temperature required for converting H(2)Ti(3)O(7) to TiO(2)-B by approximately 200 °C, and the temperature for the formation of anatase. For the Ce(3+) batch, the presence of cerium inhibited the conversion to rutile. Analysis of cerium oxidation states revealed the existence of both +4 and +3 in all calcined samples, regardless of the initial cerium oxidation state.
format Online
Article
Text
id pubmed-10421187
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104211872023-08-12 The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile Umek, Polona Dürrschnabel, Michael Molina-Luna, Leopoldo Škapin, Srečo Korošec, Romana Cerc Bittencourt, Carla Molecules Article CeO(2)-TiO(2) is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO(2) nanostructures decorated with CeO(2) nanoparticles at the surface. As the precursor, we used H(2)Ti(3)O(7) nanoribbons prepared from sodium titanate nanoribbons by ion exchange. Two cerium sources with an oxidation state of +3 and +4 were used to obtain mixed oxides. HAADF–STEM mapping of the Ce(4+)-modified nanoribbons revealed a thin continuous layer at the surface of the H(2)Ti(3)O(7) nanoribbons, while Ce(3+) cerium ions intercalated partially between the titanate layers. The phase composition and morphology changes were monitored during calcination between 620 °C and 960 °C. Thermal treatment led to the formation of CeO(2) nanoparticles on the surface of the TiO(2) nanoribbons, whose size increased with the calcination temperature. The use of Ce(4+) raised the temperature required for converting H(2)Ti(3)O(7) to TiO(2)-B by approximately 200 °C, and the temperature for the formation of anatase. For the Ce(3+) batch, the presence of cerium inhibited the conversion to rutile. Analysis of cerium oxidation states revealed the existence of both +4 and +3 in all calcined samples, regardless of the initial cerium oxidation state. MDPI 2023-08-03 /pmc/articles/PMC10421187/ /pubmed/37570808 http://dx.doi.org/10.3390/molecules28155838 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Umek, Polona
Dürrschnabel, Michael
Molina-Luna, Leopoldo
Škapin, Srečo
Korošec, Romana Cerc
Bittencourt, Carla
The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile
title The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile
title_full The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile
title_fullStr The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile
title_full_unstemmed The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile
title_short The Role of Cerium Valence in the Conversion Temperature of H(2)Ti(3)O(7) Nanoribbons to TiO(2)-B and Anatase Nanoribbons, and Further to Rutile
title_sort role of cerium valence in the conversion temperature of h(2)ti(3)o(7) nanoribbons to tio(2)-b and anatase nanoribbons, and further to rutile
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421187/
https://www.ncbi.nlm.nih.gov/pubmed/37570808
http://dx.doi.org/10.3390/molecules28155838
work_keys_str_mv AT umekpolona theroleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT durrschnabelmichael theroleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT molinalunaleopoldo theroleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT skapinsreco theroleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT korosecromanacerc theroleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT bittencourtcarla theroleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT umekpolona roleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT durrschnabelmichael roleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT molinalunaleopoldo roleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT skapinsreco roleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT korosecromanacerc roleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile
AT bittencourtcarla roleofceriumvalenceintheconversiontemperatureofh2ti3o7nanoribbonstotio2bandanatasenanoribbonsandfurthertorutile